Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998591

ABSTRACT

An intense level of academic pressure causes students to experience stress, and if this stress is not addressed, it can cause adverse mental and physical effects. Since the pandemic situation, students have received more assignments and other tasks due to the shift of classes to an online mode. Students may not realize that they are stressed, but it may be evident from other factors, including sleep deprivation and changes in eating habits. In this context, this paper presents a novel ensemble learning approach that proposes an architecture for stress level classification. It analyzes certain factors such as the sleep hours, productive time periods, screen time, weekly assignments and their submission statuses, and the studying methodology that contribute to stress among the students by collecting a survey from the student community. The survey data are preprocessed to categorize stress levels into three categories: highly stressed, manageable stress, and no stress. For the analysis of the minority class, oversampling methodology is used to remove the imbalance in the dataset, and decision tree, random forest classifier, AdaBoost, gradient boost, and ensemble learning algorithms with various combinations are implemented. To assess the model's performance, different metrics were used, such as the confusion matrix, accuracy, precision, recall, and F1 score. The results showed that the efficient ensemble learning academic stress classifier gave an accuracy of 93.48% and an F1 score of 93.14%. Fivefold cross-validation was also performed, and an accuracy of 93.45% was achieved. The receiver operating characteristic curve (ROC) value gave an accuracy of 98% for the no-stress category, while providing a 91% true positive rate for manageable and high-stress classes. The proposed ensemble learning with fivefold cross-validation outperformed various state-of-the-art algorithms to predict the stress level accurately. By using these results, students can identify areas for improvement, thereby reducing their stress levels and altering their academic lifestyles, thereby making our stress prediction approach more effective.

2.
Biomedicines ; 11(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37189784

ABSTRACT

Wireless Body Area Network (WBAN) is a trending technology of Wireless Sensor Networks (WSN) to enhance the healthcare system. This system is developed to monitor individuals by observing their physical signals to offer physical activity status as a wearable low-cost system that is considered an unremarkable solution for continuous monitoring of cardiovascular health. Various studies have discussed the uses of WBAN in Personal Health Monitoring systems (PHM) based on real-world health monitoring models. The major goal of WBAN is to offer early and fast analysis of the individuals but it is not able to attain its potential by utilizing conventional expert systems and data mining. Multiple kinds of research are performed in WBAN based on routing, security, energy efficiency, etc. This paper suggests a new heart disease prediction under WBAN. Initially, the standard patient data regarding heart diseases are gathered from benchmark datasets using WBAN. Then, the channel selections for data transmission are carried out through the Improved Dingo Optimizer (IDOX) algorithm using a multi-objective function. Through the selected channel, the data are transmitted for the deep feature extraction process using One Dimensional-Convolutional Neural Networks (ID-CNN) and Autoencoder. Then, the optimal feature selections are done through the IDOX algorithm for getting more suitable features. Finally, the IDOX-based heart disease prediction is done by Modified Bidirectional Long Short-Term Memory (M-BiLSTM), where the hyperparameters of BiLSTM are tuned using the IDOX algorithm. Thus, the empirical outcomes of the given offered method show that it accurately categorizes a patient's health status founded on abnormal vital signs that is useful for providing the proper medical care to the patients.

3.
Biomedicines ; 11(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36831118

ABSTRACT

There has been a sharp increase in liver disease globally, and many people are dying without even knowing that they have it. As a result of its limited symptoms, it is extremely difficult to detect liver disease until the very last stage. In the event of early detection, patients can begin treatment earlier, thereby saving their lives. It has become increasingly popular to use ensemble learning algorithms since they perform better than traditional machine learning algorithms. In this context, this paper proposes a novel architecture based on ensemble learning and enhanced preprocessing to predict liver disease using the Indian Liver Patient Dataset (ILPD). Six ensemble learning algorithms are applied to the ILPD, and their results are compared to those obtained with existing studies. The proposed model uses several data preprocessing methods, such as data balancing, feature scaling, and feature selection, to improve the accuracy with appropriate imputations. Multivariate imputation is applied to fill in missing values. On skewed columns, log1p transformation was applied, along with standardization, min-max scaling, maximum absolute scaling, and robust scaling techniques. The selection of features is carried out based on several methods including univariate selection, feature importance, and correlation matrix. These enhanced preprocessed data are trained on Gradient boosting, XGBoost, Bagging, Random Forest, Extra Tree, and Stacking ensemble learning algorithms. The results of the six models were compared with each other, as well as with the models used in other research works. The proposed model using extra tree classifier and random forest, outperformed the other methods with the highest testing accuracy of 91.82% and 86.06%, respectively, portraying our method as a real-world solution for detecting liver disease.

4.
Diagnostics (Basel) ; 13(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36832207

ABSTRACT

Over the past few decades, the prevalence of chronic illnesses in humans associated with high blood sugar has dramatically increased. Such a disease is referred to medically as diabetes mellitus. Diabetes mellitus can be categorized into three types, namely types 1, 2, and 3. When beta cells do not secrete enough insulin, type 1 diabetes develops. When beta cells create insulin, but the body is unable to use it, type 2 diabetes results. The last category is called gestational diabetes or type 3. This happens during the trimesters of pregnancy in women. Gestational diabetes, however, disappears automatically after childbirth or may continue to develop into type 2 diabetes. To improve their treatment strategies and facilitate healthcare, an automated information system to diagnose diabetes mellitus is required. In this context, this paper presents a novel system of classification of the three types of diabetes mellitus using a multi-layer neural network no-prop algorithm. The algorithm uses two major phases in the information system: the training phase and the testing phase. In each phase, the relevant attributes are identified using the attribute-selection process, and the neural network is trained individually in a multi-layer manner, starting with normal and type 1 diabetes, then normal and type 2 diabetes, and finally healthy and gestational diabetes. Classification is made more effective by the architecture of the multi-layer neural network. To provide experimental analysis and performances of diabetes diagnoses in terms of sensitivity, specificity, and accuracy, a confusion matrix is developed. The maximum specificity and sensitivity values of 0.95 and 0.97 are attained by this suggested multi-layer neural network. With an accuracy score of 97% for the categorization of diabetes mellitus, this proposed model outperforms other models, demonstrating that it is a workable and efficient approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...