Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(21): 11264-11273, 2022.
Article in English | MEDLINE | ID: mdl-34315340

ABSTRACT

Main protease (Mpro) of SARS-CoV-2 is a key CoV enzyme that plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-2 the new strain of coronavirus. In this study, we evaluated biologically active compounds present in medicinal plants as potential SARS-CoV-2 Mpro inhibitors, using a molecular docking study with Autodock Vina software. Top seven compounds Afzelin, Phloroglucinol, Myricetin-3-O- rutinosid Tricin 7-neohesperidoside, Silybin, Kaempferol and Silychristin among 50 molecules of natural Origin (Algerian Medicinal plants) were selected which had better and significantly low binding energy as compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8.5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best 7 ligands using the Web server SwissADME. Two of small molecules have been shown to be the ideal candidates for further drug development. Finally, the stability of the both compounds complexed with Mpro was validated through molecular dynamics (MD) simulation, they displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations, moreover, Silybin could form more stable complex with Mpro than Silychristin.Communicated by Ramaswamy H. Sarma.


Subject(s)
Protease Inhibitors , SARS-CoV-2 , Silybin , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Silybin/pharmacology
2.
J Biomol Struct Dyn ; 40(21): 10753-10762, 2022.
Article in English | MEDLINE | ID: mdl-34278954

ABSTRACT

Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2 , Phylogeny , Drug Repositioning/methods , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...