Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904395

ABSTRACT

The compatibility between isocyanate and polyol plays an important role in determining a polyurethane product's performance. This study aims to evaluate the effect of varying the ratios between polymeric methylene diphenyl diisocyanate (pMDI) and Acacia mangium liquefied wood polyol on the polyurethane film properties. A. mangium wood sawdust was liquefied in polyethylene glycol/glycerol co-solvent with H2SO4 as a catalyst at 150 °C for 150 min. The A. mangium liquefied wood was mixed with pMDI with difference NCO/OH ratios to produce film through the casting method. The effects of the NCO/OH ratios on the molecular structure of the PU film were examined. The formation of urethane, which was located at 1730 cm-1, was confirmed via FTIR spectroscopy. The TGA and DMA results indicated that high NCO/OH ratios increased the degradation temperature and glass transition from 275 °C to 286 °C and 50 °C to 84 °C, respectively. The prolonged heat appeared to boost the crosslinking density of the A. mangium polyurethane films, which finally resulted in a low sol fraction. From the 2D-COS analysis, the hydrogen-bonded carbonyl (1710 cm-1) had the most significant intensity changes with the increasing NCO/OH ratios. The occurrence of the peak after 1730 cm-1 revealed that there was substantial formation of urethane hydrogen bonding between the hard (PMDI) and soft (polyol) segments as the NCO/OH ratios increased, which gave higher rigidity to the film.

2.
Polymers (Basel) ; 15(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904501

ABSTRACT

Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.

3.
Polymers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808722

ABSTRACT

Oil palm trunk (OPT) veneers have the potential to be used in the production of plywood for marine applications. However, OPT is not resistant to fungal decay and termites, limiting its use in the production of marine plywood. As a result, in this study, phenolic resin treatment was used to improve the biological durability of OPT and produce marine grade equivalent (MGE) plywood. The OPT veneer was treated with medium molecular weight phenol formaldehyde (MmwPF) resin. The results showed that MmwPF resin with a solid content of 30% resulted in higher weight percent gain and polymer retention. Veneers treated with 30% MmwPF resin were then pressed for more than 10 min at temperatures above 140 °C. Dimensional stability, shear strength, bending strength, fungal decay resistance, and termite resistance were all tested on the plywood produced. The results of this study revealed that MGE plywood has satisfactory bonding quality and excellent biological durability. Good bending strength was recorded for the MGE plywood with modulus of rupture and modulus of elasticity ranged between 31.03 and 38.85 MPa and 4110 and 5120 MPa, respectively. Rubberwood, as a reference sample in this study, is not durable (Class 5) against white rot fungi and is moderately durable (Class III) against subterranean termite attacks. Interestingly, MGE plywood produced in this study was found very durable (Class 1) against white rot fungi. It is also durable (Class II) and very durable (Class I) against termite attacks, depending on the pressing parameters employed. Based on their outstanding bonding quality, bending strength, and biological durability, the study confirmed the feasibility of OPT plywood for marine applications.

4.
Carbohydr Polym ; 252: 117224, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183648

ABSTRACT

Carboxymethyl starch (CMS) was produced from sago starch via carboxymethylation. The CMS with different degree of substitution (DS) ranges from 0.4 to 0.8 were mixed with polyethylene glycol (PEG) of different molecular weight and distilled water and the hydrogel was cured by electron beam irradiation with doses ranging from 25 to 35 kGy. The results revealed that CMS-PEG hydrogels with DS 0.4 give the optimum gel content when radiated at 30 kGy and with PEG 600. Thermogravimetric analysis (TGA) revealed that there are two phases exist in CMS with DS 0.4 in contrast to the three steps decomposition occurs in DS 0.6 and 0.8. It shows that the CMS with DS 0.4 is more thermally stable. Surface morphology revealed crosslinking among the blends when subjected into the radiation dose. The study shows both radiation and PEG addition improved most of the properties of CMS irrespective of the DS value.

5.
Polymers (Basel) ; 12(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824275

ABSTRACT

Mechanical strength, thermal conductivity and electrical breakdown of polypropylene/lignin/kenaf core fiber (PP/L/KCF) composite were studied. PP/L, PP/KCF and PP/L/KCF composites with different fiber and lignin loading was prepared using a compounding process. Pure PP was served as control. The results revealed that tensile and flexural properties of the PP/L/KCF was retained after addition of lignin and kenaf core fibers. Thermal stability of the PP composites improved compared to pure PP polymer. As for thermal conductivity, no significant difference was observed between PP composites and pure PP. However, PP/L/KCF composite has higher thermal diffusivity. All the PP composites produced are good insulating materials that are suitable for building. All PP composites passed withstand voltage test in air and oil state as stipulated in IEC 60641-3 except PP/L in oil state. SEM micrograph showed that better interaction and adhesion between polymer matrix, lignin and kenaf core fibers was observed and reflected on the better tensile strength recorded in PP/L/KCF composite. This study has successfully filled the gap of knowledge on using lignin and kenaf fibers as PP insulator composite materials. Therefore, it can be concluded that PP/Lignin/KCF has high potential as an insulating material.

6.
Polymers (Basel) ; 12(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751175

ABSTRACT

Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common chemical reactions applied in wood modification. CA contains three carboxyl groups, making it possible to attain at least two esterification reactions that are required for crosslinking when reacting with the hydroxyl groups of the cell wall polymers. In addition, the reaction could form ester linkages to bring adhesivity and good bonding characteristics, and therefore CA could be used as wood binder too. This paper presents a review concerning the usage of CA as a wood modifying agent and binder. For wood modification, the reaction mechanism between wood and CA and the pros and cons of using CA are discussed. CA and its combination with various reactants and their respective optimum parameters are also compiled in this paper. As for the major wood bonding component, the bonding mechanism and types of wood composites bonded with CA are presented. The best working conditions for the CA in the fabrication of wood-based panels are discussed. In addition, the environmental impacts and future outlook of CA-treated wood and bonded composite are also considered.

7.
Materials (Basel) ; 12(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817323

ABSTRACT

In this study, the effects of lignin modification on the properties of kenaf core fiber reinforced poly(butylene succinate) biocomposites were examined. A weight percent gain (WPG) value of 30.21% was recorded after the lignin were modified with maleic anhydride. Lower mechanical properties were observed for lignin composites because of incompatible bonding between the hydrophobic matrix and the hydrophilic lignin. Modified lignin (ML) was found to have a better interfacial bonding, since maleic anhydrides remove most of the hydrophilic hydrogen bonding (this was proven by a Fourier-transform infrared (FTIR) spectrometer-a reduction of broadband near 3400 cm-1, corresponding to the -OH stretching vibration of hydroxyl groups for the ML samples). On the other hand, ML was found to have a slightly lower glass transition temperature, Tg, since reactions with maleic anhydride destroy most of the intra- and inter-molecular hydrogen bonds, resulting in a softer structure at elevated temperatures. The addition of kraft lignin was found to increase the thermal stability of the PBS polymer composites, while modified kraft lignin showed higher thermal stability than pure kraft lignin and possessed delayed onset thermal degradation temperature.

8.
Waste Manag ; 100: 128-137, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31536923

ABSTRACT

Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.


Subject(s)
Composting , Fruit , Fungi , Malaysia , Palm Oil
9.
Molecules ; 23(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261640

ABSTRACT

In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.


Subject(s)
Aniline Compounds/chemistry , Cellulose/chemistry , Nanocomposites/chemistry , Surface-Active Agents/chemistry , Electrochemical Techniques , Polymerization , Porosity , Surface Properties
10.
Disabil Rehabil Assist Technol ; 12(8): 868-874, 2017 11.
Article in English | MEDLINE | ID: mdl-28068847

ABSTRACT

The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.


Subject(s)
Amputation, Surgical/rehabilitation , Artificial Limbs , Leg , Patient Satisfaction , Prosthesis Design/methods , Adolescent , Adult , Aged , Aged, 80 and over , Amputees/rehabilitation , Female , Humans , Interviews as Topic , Malaysia , Male , Middle Aged , Pressure , Qualitative Research , Young Adult
11.
Molecules ; 20(9): 16540-65, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26378513

ABSTRACT

In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. Among the many possible bio resources, biologically active products from fungi and yeast represent excellent scaffolds for this purpose. Since fungi and yeast are very effective secretors of extracellular enzymes and number of species grow fast and therefore culturing and keeping them in the laboratory are very simple. They are able to produce metal nanoparticles and nanostructure via reducing enzyme intracellularly or extracellularly. The focus of this review is the application of fungi and yeast in the green synthesis of inorganic nanoparticles. Meanwhile the domain of biosynthesized nanoparticles is somewhat novel; the innovative uses in nano medicine in different areas including the delivery of drug, cancer therapy, antibacterial, biosensors, and MRI and medical imaging are reviewed. The proposed signaling pathways of nanoparticles induced apoptosis in cancerous cells and anti-angiogenesis effects also are reviewed. In this article, we provide a short summary of the present study universally on the utilization of eukaryotes like yeast and fungi in the biosynthesis of nanoparticles (NPs) and their uses.


Subject(s)
Fungi/metabolism , Nanotechnology/methods , Saccharomyces cerevisiae/metabolism , Apoptosis
12.
Article in English | MEDLINE | ID: mdl-23606884

ABSTRACT

Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ß -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

SELECTION OF CITATIONS
SEARCH DETAIL
...