Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 14(13): e5025, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39011370

ABSTRACT

As an essential process for the maintenance of cellular homeostasis and function, autophagy is responsible for the lysosome-mediated degradation of damaged proteins and organelles; therefore, dysregulation of autophagy in humans can lead to a variety of diseases. The link between impaired autophagy and disease highlights the need to investigate possible interventions to address dysregulations. One possible intervention is hyperthermia, which is described in this protocol. To investigate these interventions, a method for absolute quantification of autophagosomal compartments is required that allows comparison of autophagosomal activity under different conditions. Existing methods such as western blotting and immunohistochemistry for analysing the location and relative abundance of intracellular proteins associated with autophagy, or transmission electron microscopy (TEM), which are either very time-consuming, expensive, or both, are less suitable for this purpose. The method described in this protocol allows the absolute quantification of autophagosomes per cell in human fibroblasts using the CYTO-ID® Autophagy Detection Kit after heat therapy compared to a control. The Cyto-ID® assay is based on the use of a specific dye that selectively stains autophagic compartments, combined with an additional Hoechst 33342 dye for nuclear staining. The subsequent recognition of these stained compartments by the Cytation Imager enables the software to determine the number of autophagosomes per nucleus in living cells. Additionally, this absolute quantification uses an image-based method, and the protocol is easy to use and not time-consuming. Furthermore, the method is not only suitable for heat therapy but can also be adapted to any other desired therapy or substance. Key features • Absolute quantification of autophagic compartments in living cells. • Optimised protocol for the determination of autophagy in primary human skin fibroblasts. • Allows the testing of active substances and treatments concerning autophagy. • Imaging-based method for the determination of autophagy.

2.
J Therm Biol ; 120: 103813, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412735

ABSTRACT

Heat treatment or hyperthermia is a promising therapy for many diseases, especially cancer, and can be traced back thousands of years. Despite its long history, little is known about the cellular and molecular effects of heat on human cells. Therefore, we investigated the impact of water-filtered infrared-A (wIRA) irradiation (39 °C, 60 min) on key cellular mechanisms, namely autophagy, mitochondrial function and mRNA expression, in human fibroblasts and peripheral blood mononuclear cells (PBMCs) from healthy donors and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Our results show an induction of autophagy in healthy fibroblasts and PBMCs from healthy donors and ME/CFS patients. ME/CFS patients have higher mitochondrial function compared to healthy donors. The wIRA treatment leads to a slight reduction in mitochondrial function in PBMCs from ME/CFS patients, thereby approaching the level of mitochondrial function of healthy donors. Furthermore, an activation of the mRNA expression of the autophagy-related genes MAP1LC3B and SIRT1 as well as for HSPA1, which codes for a heat shock protein, can be observed. These results confirm an impact of heat treatment in human cells on key cellular mechanisms, namely autophagy and mitochondrial function, in health and disease, and provide hope for a potential treatment option for ME/CFS patients.


Subject(s)
Fatigue Syndrome, Chronic , Hyperthermia, Induced , Humans , Fatigue Syndrome, Chronic/therapy , Fatigue Syndrome, Chronic/metabolism , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...