Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 9(8): 1499-1507, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37433130

ABSTRACT

Antimicrobial resistance has emerged as a global public health threat, and development of novel therapeutics for treating infections caused by multi-drug resistant bacteria is urgent. Staphylococcus aureus is a major human and animal pathogen, responsible for high levels of morbidity and mortality worldwide. The intracellular survival of S. aureus in macrophages contributes to immune evasion, dissemination, and resilience to antibiotic treatment. Here, we present a confocal fluorescence imaging assay for monitoring macrophage infection by green fluorescent protein (GFP)-tagged S. aureus as a front-line tool to identify antibiotic leads. The assay was employed in combination with nanoscaled chemical analyses to facilitate the discovery of a new, active rifamycin analogue. Our findings indicate a promising new approach for the identification of antimicrobial compounds with macrophage intracellular activity. The antibiotic identified here may represent a useful addition to our armory in tackling the silent pandemic of antimicrobial resistance.


Subject(s)
Rifamycins , Staphylococcal Infections , Animals , Humans , Staphylococcus aureus , Green Fluorescent Proteins/genetics , Rifamycins/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/microbiology , Macrophages
2.
Essays Biochem ; 67(4): 671-684, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37222046

ABSTRACT

Viruses have developed sophisticated biochemical and genetic mechanisms to manipulate and exploit their hosts. Enzymes derived from viruses have been essential research tools since the first days of molecular biology. However, most viral enzymes that have been commercialized are derived from a small number of cultivated viruses, which is remarkable considering the extraordinary diversity and abundance of viruses revealed by metagenomic analysis. Given the explosion of new enzymatic reagents derived from thermophilic prokaryotes over the past 40 years, those obtained from thermophilic viruses should be equally potent tools. This review discusses the still-limited state of the art regarding the functional biology and biotechnology of thermophilic viruses with a focus on DNA polymerases, ligases, endolysins, and coat proteins. Functional analysis of DNA polymerases and primase-polymerases from phages infecting Thermus, Aquificaceae, and Nitratiruptor has revealed new clades of enzymes with strong proofreading and reverse transcriptase capabilities. Thermophilic RNA ligase 1 homologs have been characterized from Rhodothermus and Thermus phages, with both commercialized for circularization of single-stranded templates. Endolysins from phages infecting Thermus, Meiothermus, and Geobacillus have shown high stability and unusually broad lytic activity against Gram-negative and Gram-positive bacteria, making them targets for commercialization as antimicrobials. Coat proteins from thermophilic viruses infecting Sulfolobales and Thermus strains have been characterized, with diverse potential applications as molecular shuttles. To gauge the scale of untapped resources for these proteins, we also document over 20,000 genes encoded by uncultivated viral genomes from high-temperature environments that encode DNA polymerase, ligase, endolysin, or coat protein domains.


Subject(s)
Bacteriophages , Viruses , Bacteriophages/genetics , Bacteria/genetics , DNA-Directed DNA Polymerase , Biotechnology , Ligases , Biology
3.
Nat Chem Biol ; 19(7): 846-854, 2023 07.
Article in English | MEDLINE | ID: mdl-36879060

ABSTRACT

Natural products research increasingly applies -omics technologies to guide molecular discovery. While the combined analysis of genomic and metabolomic datasets has proved valuable for identifying natural products and their biosynthetic gene clusters (BGCs) in bacteria, this integrated approach lacks application to fungi. Because fungi are hyper-diverse and underexplored for new chemistry and bioactivities, we created a linked genomics-metabolomics dataset for 110 Ascomycetes, and optimized both gene cluster family (GCF) networking parameters and correlation-based scoring for pairing fungal natural products with their BGCs. Using a network of 3,007 GCFs (organized from 7,020 BGCs), we examined 25 known natural products originating from 16 known BGCs and observed statistically significant associations between 21 of these compounds and their validated BGCs. Furthermore, the scalable platform identified the BGC for the pestalamides, demystifying its biogenesis, and revealed more than 200 high-scoring natural product-GCF linkages to direct future discovery.


Subject(s)
Biological Products , Genomics , Metabolomics , Multigene Family , Fungi/genetics
4.
Mar Drugs ; 21(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36827097

ABSTRACT

As one of the first families of marine natural products to undergo clinical trials, the didemnin depsipeptides have played a significant role in inspiring the discovery of marine drugs. Originally developed as anticancer therapeutics, the recent re-evaluation of these compounds including synthetically derived dehydrodidemnin B or Aplidine, has led to their advancement towards antiviral applications. While conventionally associated with production in colonial tunicates of the family Didemnidae, recent studies have identified their biosynthetic gene clusters from the marine-derived bacteria Tistrella mobilis. While these studies confirm the production of didemnin X/Y, the low titer and general lack of understanding of their biosynthesis in Tistrella currently prevents the development of effective microbial or synthetic biological approaches for their production. To this end, we conducted a survey of known species of Tistrella and report on their ability to produce the didemnin depsipeptides. These data were used to develop conditions to produce didemnin B at titers over 15 mg/L.


Subject(s)
Antineoplastic Agents , Depsipeptides , Antineoplastic Agents/chemistry , Depsipeptides/chemistry , Peptides, Cyclic/chemistry
5.
Front Microbiol ; 13: 858366, 2022.
Article in English | MEDLINE | ID: mdl-35531281

ABSTRACT

Viruses are the most abundant and diverse biological entities on the planet and constitute a significant proportion of Earth's genetic diversity. Most of this diversity is not represented by isolated viral-host systems and has only been observed through sequencing of viral metagenomes (viromes) from environmental samples. Viromes provide snapshots of viral genetic potential, and a wealth of information on viral community ecology. These data also provide opportunities for exploring the biochemistry of novel viral enzymes. The in vitro biochemical characteristics of novel viral DNA polymerases were explored, testing hypothesized differences in polymerase biochemistry according to protein sequence phylogeny. Forty-eight viral DNA Polymerase I (PolA) proteins from estuarine viromes, hot spring metagenomes, and reference viruses, encompassing a broad representation of currently known diversity, were synthesized, expressed, and purified. Novel functionality was shown in multiple PolAs. Intriguingly, some of the estuarine viral polymerases demonstrated moderate to strong innate DNA strand displacement activity at high enzyme concentration. Strand-displacing polymerases have important technological applications where isothermal reactions are desirable. Bioinformatic investigation of genes neighboring these strand displacing polymerases found associations with SNF2 helicase-associated proteins. The specific function of SNF2 family enzymes is unknown for prokaryotes and viruses. In eukaryotes, SNF2 enzymes have chromatin remodeling functions but do not separate nucleic acid strands. This suggests the strand separation function may be fulfilled by the DNA polymerase for viruses carrying SNF2 helicase-associated proteins. Biochemical data elucidated from this study expands understanding of the biology and ecological behavior of unknown viruses. Moreover, given the numerous biotechnological applications of viral DNA polymerases, novel viral polymerases discovered within viromes may be a rich source of biological material for further in vitro DNA amplification advancements.

6.
Med Law Rev ; 30(1): 137-149, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-34406389

ABSTRACT

This commentary considers the case of Brennan, in which surviving family members successfully brought a Human Rights Act 1998 (HRA) claim against a hospital and a council for the way in which they both treated a body post-mortem. Their failure to freeze it led to such a state of decomposition that it was unfit for viewing. The family argued this constituted an unjustified interference with their rights to family and private life. After a review of Strasbourg case law, the Leeds County Court found for them and awarded them damages under section 8 of the HRA. This commentary evaluates both the Strasbourg law and the way it was utilised and interpreted domestically. While agreeing with the outcome, the authors conclude that the Strasbourg case law does not line up four square-and instead they suggest that a different approach, accepting the legitimacy of a claim based on 'memory-securing', is warranted on the facts. The commentary also questions whether the court was correct in seeing the rights reposed in the surviving family, and offers the view that greater coherence to the law might be achieved if we conceive of the survivors as the vehicle for the exercise of rights by the deceased.


Subject(s)
Family , State Medicine , Cadaver , Hospitals, Teaching , Human Rights , Humans
7.
J Am Med Inform Assoc ; 28(6): 1065-1073, 2021 06 12.
Article in English | MEDLINE | ID: mdl-33611523

ABSTRACT

OBJECTIVE: Access to palliative care (PC) is important for many patients with uncontrolled symptom burden from serious or complex illness. However, many patients who could benefit from PC do not receive it early enough or at all. We sought to address this problem by building a predictive model into a comprehensive clinical framework with the aims to (i) identify in-hospital patients likely to benefit from a PC consult, and (ii) intervene on such patients by contacting their care team. MATERIALS AND METHODS: Electronic health record data for 68 349 inpatient encounters in 2017 at a large hospital were used to train a model to predict the need for PC consult. This model was published as a web service, connected to institutional data pipelines, and consumed by a downstream display application monitored by the PC team. For those patients that the PC team deems appropriate, a team member then contacts the patient's corresponding care team. RESULTS: Training performance AUC based on a 20% holdout validation set was 0.90. The most influential variables were previous palliative care, hospital unit, Albumin, Troponin, and metastatic cancer. The model has been successfully integrated into the clinical workflow making real-time predictions on hundreds of patients per day. The model had an "in-production" AUC of 0.91. A clinical trial is currently underway to assess the effect on clinical outcomes. CONCLUSIONS: A machine learning model can effectively predict the need for an inpatient PC consult and has been successfully integrated into practice to refer new patients to PC.


Subject(s)
Machine Learning , Medical Informatics , Palliative Care , Aged , Area Under Curve , Decision Support Systems, Clinical , Delivery of Health Care , Electronic Health Records , Female , Humans , Male , Middle Aged , Quality Improvement , ROC Curve
8.
Front Microbiol ; 11: 585398, 2020.
Article in English | MEDLINE | ID: mdl-33365020

ABSTRACT

Soil microorganisms historically have been a rich resource for natural product discovery, yet the majority of these microbes remain uncultivated and their biosynthetic capacity is left underexplored. To identify the biosynthetic potential of soil microorganisms using a culture-independent approach, we constructed a large-insert metagenomic library in Escherichia coli from a topsoil sampled from the Cullars Rotation (Auburn, AL, United States), a long-term crop rotation experiment. Library clones were screened for biosynthetic gene clusters (BGCs) using either PCR or a NGS (next generation sequencing) multiplexed pooling strategy, coupled with bioinformatic analysis to identify contigs associated with each metagenomic clone. A total of 1,015 BGCs were detected from 19,200 clones, identifying 223 clones (1.2%) that carry a polyketide synthase (PKS) and/or a non-ribosomal peptide synthetase (NRPS) cluster, a dramatically improved hit rate compared to PCR screening that targeted type I polyketide ketosynthase (KS) domains. The NRPS and PKS clusters identified by NGS were distinct from known BGCs in the MIBiG database or those PKS clusters identified by PCR. Likewise, 16S rRNA gene sequences obtained by NGS of the library included many representatives that were not recovered by PCR, in concordance with the same bias observed in KS amplicon screening. This study provides novel resources for natural product discovery and circumvents amplification bias to allow annotation of a soil metagenomic library for a more complete picture of its functional and phylogenetic diversity.

9.
Front Microbiol ; 11: 583361, 2020.
Article in English | MEDLINE | ID: mdl-33281778

ABSTRACT

Despite the high abundance of Aquificae in many geothermal systems, these bacteria are difficult to culture and no viruses infecting members of this phylum have been isolated. Here, we describe the complete, circular dsDNA Uncultivated Virus Genome (UViG) of Thermocrinis Octopus Spring virus (TOSV), derived from metagenomic data, along with eight related UViGs representing three additional viral species. Despite low overall similarity among viruses from different hot springs, the genomes shared a high degree of synteny, and encoded numerous genes for nucleotide metabolism, including a PolA-type DNA polymerase polyprotein with likely accessory functions, a DNA Pol III sliding clamp, a thymidylate kinase, a DNA gyrase, a helicase, and a DNA methylase. Also present were conserved genes predicted to code for phage capsid, large and small subunits of terminase, portal protein, holin, and lytic transglycosylase, all consistent with a distant relatedness to cultivated Caudovirales. These viruses are predicted to infect Aquificae, as multiple CRISPR spacers matching the viral genomes were identified within the genomes and metagenomic contigs from these bacteria. Based on the predicted atypical bi-directional replication strategy, low sequence similarity to known viral genomes, and unique position in gene-sharing networks, we propose a new putative genus, "Pyrovirus," in the order Caudovirales.

10.
PLoS One ; 15(8): e0236399, 2020.
Article in English | MEDLINE | ID: mdl-32845878

ABSTRACT

Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.


Subject(s)
Anthozoa/growth & development , Climate Change , Conservation of Natural Resources , Ecosystem , Acclimatization/physiology , Animals , Coral Reefs , Models, Theoretical
11.
Sci Rep ; 10(1): 12919, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737431

ABSTRACT

Research with coral embryos and larvae often requires laborious manual counting and sorting of individual specimens, usually via microscopy. Because many coral species spawn only once per year during a narrow temporal window, sample processing is a time-limiting step for research on the early life-history stages of corals. Flow cytometry, an automated technique for measuring and sorting particles, cells, and cell-clusters, is a potential solution to this bottleneck. Yet most flow cytometers do not accommodate live organisms of the size of most coral embryos (> 250 µm), and sample processing is often destructive. Here we tested the ability of a large-particle flow cytometer with a gentle pneumatic sorting mechanism to process and spectrally sort live and preserved Montipora capitata coral embryos and larvae. Average survival rates of mechanically-sorted larvae were over 90% and were comparable to those achieved by careful hand-sorting. Preserved eggs and embryos remained intact throughout the sorting process and were successfully sorted based on real-time size and fluorescence detection. In-line bright-field microscopy images were captured for each sample object as it passed through the flow-cell, enabling the identification of early-stage embryos (2-cell to morula stage). Samples were counted and sorted at an average rate of 4 s larva-1 and as high as 0.2 s larva-1 for high-density samples. Results presented here suggest that large-particle flow cytometry has the potential to significantly increase efficiency and accuracy of data collection and sample processing during time-limited coral spawning events, facilitating larger-scale and higher-replication studies with an expanded number of species.


Subject(s)
Anthozoa , Flow Cytometry , Animals , Anthozoa/cytology , Anthozoa/physiology , Larva/cytology , Larva/physiology
12.
Sci Rep ; 9(1): 14596, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601965

ABSTRACT

Embedding and immobilisation of living cells and microorganisms is used in a variety of research and commercial applications. Here we report the successful extended immobilisation of coral larvae in a low-gelling temperature agarose. Embryos and larvae of five broadcast-spawning Scleractinian species were immobilised in agarose gel and tested in a series of exploratory survival and settlement assays. The optimal developmental stage for immobilisation was after ciliation at approximately 24 hours post-fertilisation, after which, survival of immobilised larvae of all species was nearly 100%. In long-term assays, 50% of Montipora digitata larvae survived immobilised for 89 days. Furthermore, immobilised larvae of multiple species, that were released from the agarose, generally remained capable of settlement. These results demonstrate that the immobilisation of the early life-history stages of corals is possible for a variety of applications in basic and applied science.


Subject(s)
Anthozoa/embryology , Anthozoa/physiology , Developmental Biology/methods , Larva/physiology , Animals , Coral Reefs , Developmental Biology/instrumentation , Fertilization , Hydrogels , Microscopy, Fluorescence , Temperature
13.
J Nat Prod ; 81(6): 1321-1332, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29897754

ABSTRACT

A functional metagenomic approach identified novel and diverse soil-derived DNAs encoding inhibitors to methicillin-resistant Staphylococcus aureus (MRSA). A metagenomic DNA soil library containing 19 200 recombinant Escherichia coli BAC clones with 100 Kb average insert size was screened for antibiotic activity. Twenty-seven clones inhibited MRSA, seven of which were found by LC-MS to possess modified chloramphenicol ( Cm) derivatives, including three new compounds whose structures were established as 1-acetyl-3-propanoylchloramphenicol, 1-acetyl-3-butanoylchloramphenicol, and 3-butanoyl-1-propanoylchloramphenicol. Cm was used as the selectable antibiotic for cloning, suggesting that heterologously expressed enzymes resulted in derivatization of Cm into new chemical entities with biological activity. An esterase was found to be responsible for the enzymatic regeneration of Cm, and the gene trfA responsible for plasmid copy induction was found to be responsible for inducing antibacterial activity in some clones. Six additional acylchloramphenicols were synthesized for structure and antibacterial activity relationship studies, with 1- p-nitrobenzoylchloramphenicol the most active against Mycobacterium intracellulare and Mycobacterium tuberculosis, with MICs of 12.5 and 50.0 µg/mL, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Metagenomics/methods , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests/methods
16.
JCO Precis Oncol ; 20172017.
Article in English | MEDLINE | ID: mdl-30761385

ABSTRACT

PURPOSE: Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician's ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. MATERIALS AND METHODS: Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. RESULTS: The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522VUSs of interest, including a large number of kinases. Ten receptortyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. CONCLUSION: The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians' ability to make informed treatment decisions.

17.
J Bacteriol ; 199(6)2017 03 15.
Article in English | MEDLINE | ID: mdl-28031280

ABSTRACT

Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments. The 120- and 32-kDa fragments remain noncovalently associated on the surface of the bacterium, with implications that the 32-kDa fragment functions as the membrane anchor domain. Here we present evidence for a similar posttranslational processing of rOmpA. rOmpA is expressed as a predicted 224-kDa precursor yet is observed on SDS-PAGE as a 190-kDa protein. A small rOmpA fragment of ∼32 kDa was discovered during surface proteome analysis and identified as the carboxy-terminal end of the protein. A rabbit polyclonal antibody was generated to the autotransporter region of rOmpA and confirmed a 32-kDa fragment corresponding to the calculated mass of a proteolytically cleaved rOmpA autotransporter region. N-terminal amino acid sequencing revealed a cleavage site on the carboxy-terminal side of Ser-1958 in rOmpA. An avirulent strain of R. rickettsii Iowa deficient in rOmpB processing was also defective in the processing of rOmpA. The similarities of the cleavage sites and the failure of R. rickettsii Iowa to process either rOmpA or rOmpB suggest that a single enzyme may be responsible for both processing events.IMPORTANCE Members of the spotted fever group of rickettsiae, including R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, express at least four autotransporter proteins that are protective antigens or putative virulence determinants. One member of this class of proteins, rOmpB, is proteolytically processed to a passenger domain and an autotransporter domain that remain associated on the rickettsial outer membrane. The protease responsible for this posttranslation processing remains unknown. Here we show that another autotransporter, rOmpA, is similarly processed by R. rickettsii Similarities in sequence at the cleavage site and predicted secondary protein structure suggest that all four R. rickettsii autotransporters may be processed by the same outer membrane protease.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Rickettsia rickettsii/metabolism , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/genetics , Female , Genome, Bacterial , Guinea Pigs , Rickettsia rickettsii/genetics , Rocky Mountain Spotted Fever/microbiology
18.
J Infect Dis ; 214(suppl 3): S234-S242, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27638947

ABSTRACT

A molecular diagnostic method for robust detection of Ebola virus (EBOV) at the point of care (POC) directly from blood samples is described. This assay is based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) of the glycoprotein gene of EBOV. Complete reaction formulations were lyophilized in 0.2-mL polymerase chain reaction tubes. RT-LAMP reactions were performed on a battery-operated isothermal instrument. Limit of detection of this RT-LAMP assay was 2.8 × 102 plaque-forming units (PFU)/test and 1 × 103 PFU/test within 40 minutes for EBOV-Kikwit and EBOV-Makona, respectively. This assay was found to be specific for the detection of EBOV, as no nonspecific amplification was detected in blood samples spiked with closely related viruses and other pathogens. These results showed that this diagnostic test can be used at the point of care for rapid and specific detection of EBOV directly from blood with high sensitivity within 40 minutes.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , RNA, Viral/blood , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Molecular Diagnostic Techniques , RNA, Viral/genetics , Sensitivity and Specificity
19.
Stand Genomic Sci ; 11: 33, 2016.
Article in English | MEDLINE | ID: mdl-27123157

ABSTRACT

Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with an average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.

20.
BMC Genomics ; 17: 179, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26940863

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) infections range in severity due to expression of certain virulence factors encoded on mobile genetic elements (MGE). As such, characterization of these MGE, as well as single nucleotide polymorphisms, is of high clinical and microbiological importance. To understand the evolution of these dangerous pathogens, it is paramount to define reference strains that may predate MGE acquisition. One such candidate is S. aureus Tager 104, a previously uncharacterized strain isolated from a patient with impetigo in 1947. RESULTS: We show here that S. aureus Tager 104 can survive in the bloodstream and infect naïve organs. We also demonstrate a procedure to construct and validate the assembly of S. aureus genomes, using Tager 104 as a proof-of-concept. In so doing, we bridged confounding gap regions that limited our initial attempts to close this 2.82 Mb genome, through integration of data from Illumina Nextera paired-end, PacBio RS, and Lucigen NxSeq mate-pair libraries. Furthermore, we provide independent confirmation of our segmental arrangement of the Tager 104 genome by the sole use of Lucigen NxSeq libraries filled by paired-end MiSeq reads and alignment with SPAdes software. Genomic analysis of Tager 104 revealed limited MGE, and a νSaß island configuration that is reminiscent of other hospital acquired S. aureus genomes. CONCLUSIONS: Tager 104 represents an early-branching ancestor of certain hospital-acquired strains. Combined with its earlier isolation date and limited content of MGE, Tager 104 can serve as a viable reference for future comparative genome studies.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Staphylococcus aureus/genetics , Animals , Bacterial Typing Techniques , Cross Infection/microbiology , Female , Gene Library , Humans , Mice, Inbred C57BL , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Proteome , Sequence Alignment , Software , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification , Staphylococcus aureus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...