Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 23(12): 4295-306, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12773571

ABSTRACT

The mammalian Bin1/Amphiphysin II gene encodes an assortment of alternatively spliced adapter proteins that exhibit markedly divergent expression and subcellular localization profiles. Bin1 proteins have been implicated in a variety of different cellular processes, including endocytosis, actin cytoskeletal organization, transcription, and stress responses. To gain insight into the physiological functions of the Bin1 gene, we have disrupted it by homologous recombination in the mouse. Bin1 loss had no discernible impact on either endocytosis or phagocytosis in mouse embryo-derived fibroblasts and macrophages, respectively. Similarly, actin cytoskeletal organization, proliferation, and apoptosis in embryo fibroblasts were all unaffected by Bin1 loss. In vivo, however, Bin1 loss resulted in perinatal lethality. Bin1 has been reported to affect muscle cell differentiation and T-tubule formation. No striking histological abnormalities were evident in skeletal muscle of Bin1 null embryos, but severe ventricular cardiomyopathy was observed in these embryos. Ultrastructurally, myofibrils in ventricular cardiomyocytes of Bin1 null embryos were severely disorganized. These results define a developmentally critical role for the Bin1 gene in cardiac muscle development.


Subject(s)
Adaptor Proteins, Signal Transducing , Carrier Proteins/genetics , Endocytosis , Muscles/cytology , Nerve Tissue Proteins , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Actins/metabolism , Animals , Apoptosis , Blotting, Western , Cardiomyopathies/pathology , Cell Division , Cell Line , Culture Media, Serum-Free/pharmacology , Cytoskeleton/metabolism , Fibroblasts/metabolism , Immunohistochemistry , Macrophages , Mice , Models, Genetic , Muscle, Skeletal/cytology , Muscle, Skeletal/ultrastructure , Muscles/metabolism , Muscles/ultrastructure , Mutagenesis, Site-Directed , Phagocytosis , Polymerase Chain Reaction , Protein Isoforms , Protein Structure, Tertiary , Time Factors
2.
Anal Biochem ; 306(1): 17-22, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12069409

ABSTRACT

Peptidoglycan synthesis begins in the cytoplasm with the condensation of UDP-N-acetyl glucosamine (UDP-GlcNAc) and phosphoenolpyruvate catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase. UDP-GlcNAc is also utilized as substrate for the glycosyltransferase MurG, a membrane-bound enzyme that catalyzes the production of lipid II. Membranes from Escherichia coli cells overproducing MurG support peptidoglycan formation at a rate approximately fivefold faster than membranes containing wild-type levels of MurG. Conditions have been optimized for the production of large amounts of membranes with increased levels of MurG, allowing the development of an assay suitable for high-throughput screening of large compound libraries. The quality of the purified membranes was assessed by electron microscopy and also by testing cross-linked peptidoglycan production. Moreover, kinetic studies allowed the determination of optimal concentrations of the substrates and membranes to be utilized for maximum sensitivity of the assay. Using a 96-well assay format, the IC50 values for vancomycin, tunicamycin, flavomycin, and bacitracin were 1.1 microM, 0.01 microg/ml, 0.03 microg/ml, and 0.7 microg/ml, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins , Biological Assay/methods , Cell Membrane/metabolism , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Peptidoglycan/biosynthesis , Anti-Bacterial Agents/analysis , Cell Membrane/ultrastructure , Escherichia coli/cytology , Escherichia coli/enzymology , Escherichia coli/genetics , Inhibitory Concentration 50 , Kinetics , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Reproducibility of Results , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...