Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurodegener ; 18(1): 80, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940962

ABSTRACT

Peptides and their mimetics are increasingly recognised as drug-like molecules, particularly for intracellular protein-protein interactions too large for inhibition by small molecules, and inaccessible to larger biologics. In the past two decades, evidence associating the misfolding and aggregation of alpha-synuclein strongly implicates this protein in disease onset and progression of Parkinson's disease and related synucleinopathies. The subsequent formation of toxic, intracellular, Lewy body deposits, in which alpha-synuclein is a major component, is a key diagnostic hallmark of the disease. To reach their therapeutic site of action, peptides must both cross the blood-brain barrier and enter dopaminergic neurons to prevent the formation of these intracellular inclusions. In this review, we describe and summarise the current efforts made in the development of peptides and their mimetics to directly engage with alpha-synuclein with the intention of modulating aggregation, and importantly, toxicity. This is a rapidly expanding field with great socioeconomic impact; these molecules harbour significant promise as therapeutics, or as early biomarkers during prodromal disease stages, or both. As these are age-dependent conditions, an increasing global life expectancy means disease prevalence is rising. No current treatments exist to either prevent or slow disease progression. It is therefore crucial that drugs are developed for these conditions before health care and social care capacities become overrun.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Inclusion Bodies/metabolism , Peptides
2.
Sci Rep ; 13(1): 10968, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414785

ABSTRACT

Parkinson's is the second most common neurodegenerative disease, with the number of individuals susceptible due to increase as a result of increasing life expectancy and a growing worldwide population. However, despite the number of individuals affected, all current treatments for PD are symptomatic-they alleviate symptoms, but do not slow disease progression. A major reason for the lack of disease-modifying treatments is that there are currently no methods to diagnose individuals during the earliest stages of the disease, nor are there any methods to monitor disease progression at a biochemical level. Herein, we have designed and evaluated a peptide-based probe to monitor αS aggregation, with a particular focus on the earliest stages of the aggregation process and the formation of oligomers. We have identified the peptide-probe K1 as being suitable for further development to be applied to number of applications including: inhibition of αS aggregation; as a probe to monitor αS aggregation, particularly at the earliest stages before Thioflavin-T is active; and a method to detect early-oligomers. With further development and in vivo validation, we anticipate this probe could be used for the early diagnosis of PD, a method to evaluate the effectiveness of potential therapeutics, and as a tool to help in the understanding of the onset and development of PD.


Subject(s)
Neurodegenerative Diseases , Humans , alpha-Synuclein , Peptides
3.
J Biol Chem ; 298(12): 102565, 2022 12.
Article in English | MEDLINE | ID: mdl-36208776

ABSTRACT

α-synuclein (αS) is the key component of synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. αS was first linked to PD through the identification of point mutations in the SNCA gene, causing single amino acid substitutions within αS and familial autosomal dominant forms of PD that profoundly accelerated disease onset by up to several decades. At least eight single-point mutations linked to familial PD (A30G/P, E46K, H50Q, G51D, and A53T/E/V) are located in proximity of the region preceding the non-ß amyloid component (preNAC) region, strongly implicating its pathogenic role in αS-mediated cytotoxicity. Furthermore, lipids are known to be important for native αS function, where they play a key role in the regulation of synaptic vesicle docking to presynaptic membranes and dopamine transmission. However, the role of lipids in the function of mutant αS is unclear. Here, we studied αS aggregation properties of WT αS and five of the most predominant single-point missense mutants associated with early onset PD in the presence of anionic 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine lipid vesicles. Our results highlight significant differences between aggregation rates, the number of aggregates produced, and overall fibril morphologies of WT αS and the A30P, E46K, H50Q, G51D, and A53T missense mutants in the presence of lipid vesicles. These findings have important implications regarding the interplay between the lipids required for αS function and the individual point mutations known to accelerate PD and related diseases.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Gene Expression , Lipids , Parkinson Disease/metabolism , Point Mutation , Mutation, Missense
4.
ACS Chem Neurosci ; 13(12): 1790-1804, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35613323

ABSTRACT

Parkinson's Disease (PD) is characterized by the accumulation of Lewy bodies in dopaminergic neurons. The main protein component of Lewy bodies, α-synuclein (αS), is also firmly linked to PD through the identification of a number of single point mutations that are autosomal dominant for early-onset disease. Consequently, the misfolding and subsequent aggregation of αS is thought to be a key stage in the development and progression of PD. Therefore, modulating the aggregation pathway of αS is an attractive therapeutic target. Owing to the fact that all but one of the familial mutations is located in the preNAC 45-54 region of αS, we previously designed a semi-rational library using this sequence as a design scaffold. The 45-54 peptide library was screened using a protein-fragment complementation assay approach, leading to the identification of the 4554W peptide. The peptide was subsequently found to be effective in inhibiting primary nucleation of αS, the earliest stage of the aggregation pathway. Here, we build upon this previous work by screening the same 45-54 library against five of the known αS single-point mutants that are associated with early-onset PD (A30P, E46K, H50Q, G51D, and A53T). These point mutations lead to a rapid acceleration of PD pathology by altering either the rate or type of aggregates formed. All ultimately lead to earlier disease onset and were therefore used to enforce increased assay stringency during the library screening process. The ultimate aim was to identify a peptide that is effective against not only the familial αS variant from which it has been selected but that is also effective against WT αS. Screening resulted in five peptides that shared common residues at some positions, while deviating at others. All reduced aggregation of the respective target, with several also identified to be effective at reducing aggregation when incubated with other variants. In addition, our results demonstrate that a previously optimized peptide, 4554W(N6A), is highly effective against not only WT αS but also several of the single-point mutant forms and hence is a suitable baseline for further work toward a PD therapeutic.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Mutation/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Peptides , Point Mutation , alpha-Synuclein/metabolism
5.
J Mol Biol ; 433(24): 167323, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34695381

ABSTRACT

Misfolding and aggregation of alpha-synuclein (αS) within dopaminergic neurons is a key factor in the development and progression of a group of age-related neurodegenerative diseases, termed synucleinopathies, that include Parkinson's disease (PD). We previously derived a peptide inhibitor from a 209,952-member intracellular library screen by employing the preNAC region (45-54) as a design template. At least six single-point mutations firmly linked to early-onset Parkinson's disease (E46K, H50Q, G51D, A53T/E/V) are located within this region, strongly implicating a pathogenic role within αS that leads to increased cytotoxicity. A library-derived ten residue peptide, 4554W, was consequently shown to block αS aggregation at the point of primary nucleation via lipid induction, inhibiting its conversion into downstream cytotoxic species. Here we couple truncation with a full alanine scan analysis, to establish the effect upon the αS aggregation pathway relative to 4554W. This revealed the precise residues responsible for eliciting inhibitory interaction and function, as well as those potentially amenable to modification or functionalisation. We find that modification N6A combined with N-terminal truncation results in a peptide of significantly increased efficacy. Importantly, our data demonstrate that the peptide does not directly disrupt αS lipid-binding, a desirable trait since antagonists of αS aggregation and toxicity should not impede association with small synaptic neurotransmitter vesicles, and thus not disrupt dopaminergic vesicle fusion and recycling. This work paves the way toward the major aim of deriving a highly potent peptide antagonist of αS pathogenicity without impacting on native αS function.


Subject(s)
Antiparkinson Agents/chemistry , Parkinson Disease/metabolism , Peptidomimetics/chemistry , Protein Aggregates/drug effects , Protein Folding/drug effects , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/chemistry , Alanine/chemistry , Alanine/genetics , Antiparkinson Agents/pharmacology , Cryoelectron Microscopy , Cytoplasmic Vesicles/metabolism , Dopaminergic Neurons/metabolism , Humans , Lipids/chemistry , Parkinson Disease/genetics , Peptide Library , Peptidomimetics/pharmacology , Point Mutation , alpha-Synuclein/genetics
6.
Front Neurosci ; 14: 561462, 2020.
Article in English | MEDLINE | ID: mdl-33177976

ABSTRACT

α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.

7.
J Mol Biol ; 432(24): 166706, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33186583

ABSTRACT

Aggregation of α-Synuclein (αS) is widely regarded as a key factor in neuronal cell death, leading to a wide range of synucleinopathies, including Parkinson's Disease. Development of therapeutics has therefore focused on inhibiting aggregation of αS into toxic forms. One such inhibitor, based on the preNAC region αS45-54 (4554W), was identified using an intracellular peptide library screen, and subsequently shown to both inhibit formation of αS aggregates while simultaneously lowering toxicity. Subsequent efforts have sought to determine the mode of 4554W action. In particular, and consistent with the fact that both target and peptide are co-produced during library screening, we find that the peptide inhibits primary nucleation of αS, but does not modulate downstream elongation or secondary nucleation events. These findings hold significant promise towards mechanistic understanding and development of molecules that can module the first steps in αS aggregation towards novel treatments for Parkinson's disease and related synucleinopathies.


Subject(s)
Parkinson Disease/drug therapy , Peptides/therapeutic use , Protein Aggregates/drug effects , alpha-Synuclein/genetics , Amyloid/drug effects , Amyloid/genetics , Gene Library , Humans , Neurons/drug effects , Neurons/pathology , Parkinson Disease/genetics , Peptides/genetics , alpha-Synuclein/antagonists & inhibitors
8.
NPJ Parkinsons Dis ; 6: 17, 2020.
Article in English | MEDLINE | ID: mdl-32864427

ABSTRACT

α-Synuclein (αS) deposition is a defining characteristic of Parkinson's disease (PD) pathology, and other synucleinopathies. αS aggregates in disease, leading to the generation of neuronal inclusions known as Lewy bodies. These accumulate in the cytoplasmic space of dopaminergic neurons in the substantia nigra pars compacta region of the brain, causing cell death, resulting in decreased dopamine levels, and ultimately PD symptoms. To date, a significant proportion of structural information has arisen from in vitro studies using recombinantly purified forms of the protein, often failing to acknowledge that αS is natively located in the presence of phospholipids, where it likely plays a direct role in regulating synaptic vesicle function and neurotransmission. Here we present a series of macromolecular αS assemblies not previously described that form in the presence of lipid vesicles. These fibrillar structures are striking in both their large size relative to those previously reported and by their varying helical content, from ribbons to wave-like helices of long pitch shortening to those more compact and bulkier. These studies provide the foundation for more detailed structural analysis, and may offer new possibilities to further define disease-relevant versions of the protein that are accessible to pharmacological intervention.

9.
Mol Neurodegener ; 14(1): 29, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31331359

ABSTRACT

Alpha-synuclein (αS) is the major constituent of Lewy bodies and a pathogenic hallmark of all synucleinopathathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). All diseases are determined by αS aggregate deposition but can be separated into distinct pathological phenotypes and diagnostic criteria. Here we attempt to reinterpret the literature, particularly in terms of how αS structure may relate to pathology. We do so in the context of a rapidly evolving field, taking into account newly revealed structural information on both native and pathogenic forms of the αS protein, including recent solid state NMR and cryoEM fibril structures. We discuss how these new findings impact on current understanding of αS and PD, and where this information may direct the field.


Subject(s)
Lewy Body Disease/metabolism , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Brain/pathology , Humans , Lewy Bodies/metabolism , Multiple System Atrophy/metabolism , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...