Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e16998, 2024.
Article in English | MEDLINE | ID: mdl-38436010

ABSTRACT

Total ring depopulation is sometimes used as a management strategy for emerging infectious diseases in livestock, which raises ethical concerns regarding the potential slaughter of large numbers of healthy animals. We evaluated a farm-density-based ring culling strategy to control foot-and-mouth disease (FMD) in the United Kingdom (UK), which may allow for some farms within rings around infected premises (IPs) to escape depopulation. We simulated this reduced farm density, or "target density", strategy using a spatially-explicit, stochastic, state-transition algorithm. We modeled FMD spread in four counties in the UK that have different farm demographics, using 740,000 simulations in a full-factorial analysis of epidemic impact measures (i.e., culled animals, culled farms, and epidemic length) and cull strategy parameters (i.e., target farm density, daily farm cull capacity, and cull radius). All of the cull strategy parameters listed above were drivers of epidemic impact. Our simulated target density strategy was usually more effective at combatting FMD compared with traditional total ring depopulation when considering mean culled animals and culled farms and was especially effective when daily farm cull capacity was low. The differences in epidemic impact measures among the counties are likely driven by farm demography, especially differences in cattle and farm density. To prevent over-culling and the associated economic, organizational, ethical, and psychological impacts, the target density strategy may be worth considering in decision-making processes for future control of FMD and other diseases.


Subject(s)
Communicable Diseases, Emerging , Epidemics , Foot-and-Mouth Disease , Animals , Cattle , Foot-and-Mouth Disease/epidemiology , Disease Outbreaks/prevention & control , Epidemics/prevention & control , Algorithms
2.
Health Secur ; 20(4): 331-338, 2022.
Article in English | MEDLINE | ID: mdl-35925788

ABSTRACT

Underreporting of infectious diseases is a pervasive challenge in public health that has emerged as a central issue in characterizing the dynamics of the COVID-19 pandemic. Infectious diseases are underreported for a range of reasons, including mild or asymptomatic infections, weak public health infrastructure, and government censorship. In this study, we investigated factors associated with cross-country and cross-pathogen variation in reporting. We performed a literature search to collect estimates of empirical reporting rates, calculated as the number of cases reported divided by the estimated number of true cases. This literature search yielded a dataset of reporting rates for 32 pathogens, representing 52 countries. We combined epidemiological and social science theory to identify factors specific to pathogens, country health systems, and politics that could influence empirical reporting rates. We performed generalized linear regression to test the relationship between the pathogen- and country-specific factors that we hypothesized could influence reporting rates, and the reporting rate estimates that we collected in our literature search. Pathogen- and country-specific factors were predictive of reporting rates. Deadlier pathogens and sexually transmitted diseases were more likely to be reported. Country epidemic preparedness was positively associated with reporting completeness, while countries with high levels of media bias in favor of incumbent governments were less likely to report infectious disease cases. Underreporting is a complex phenomenon that is driven by factors specific to pathogens, country health systems, and politics. In this study, we identified specific and measurable components of these broader factors that influence pathogen- and country-specific reporting rates and used model selection techniques to build a model that can guide efforts to diagnose, characterize, and reduce underreporting. Furthermore, this model can characterize uncertainty and correct for bias in reported infectious disease statistics, particularly when outbreak-specific empirical estimates of underreporting are unavailable. More precise estimates can inform control policies and improve the accuracy of infectious disease models.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Pandemics/prevention & control , Politics , Public Health
3.
Ecol Evol ; 7(23): 10315-10325, 2017 12.
Article in English | MEDLINE | ID: mdl-29238557

ABSTRACT

The number of prey killed by diverse predator communities is determined by complementarity and interference among predators, and by traits of particular predator species. However, it is less clear how predators' nonconsumptive effects (NCEs) scale with increasing predator biodiversity. We examined NCEs exerted on Culex mosquitoes by a diverse community of aquatic predators. In the field, mosquito larvae co-occurred with differing densities and species compositions of mesopredator insects; top predator dragonfly naiads were present in roughly half of surveyed water bodies. We reproduced these predator community features in artificial ponds, exposing mosquito larvae to predator cues and measuring resulting effects on mosquito traits throughout development. Nonconsumptive effects of various combinations of mesopredator species reduced the survival of mosquito larvae to pupation, and reduced the size and longevity of adult mosquitoes that later emerged from the water. Intriguingly, adding single dragonfly naiads to ponds restored survivorship of larval mosquitoes to levels seen in the absence of predators, and further decreased adult mosquito longevity compared with mosquitoes emerging from mesopredator treatments. Behavioral observations revealed that mosquito larvae regularly deployed "diving" escape behavior in the presence of the mesopredators, but not when a dragonfly naiad was also present. This suggests that dragonflies may have relaxed NCEs of the mesopredators by causing mosquitoes to abandon energetically costly diving. Our study demonstrates that adding one individual of a functionally unique species can substantially alter community-wide NCEs of predators on prey. For pathogen vectors like mosquitoes, this could in turn influence disease dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...