Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; : e2300376, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031512

ABSTRACT

Even with the current advancements in wound management, addressing most skin injuries and wounds continues to pose a significant obstacle for the healthcare industry. As a result, researchers are now focusing on creating innovative materials utilizing cellulose and its derivatives. Cellulose, the most abundant biopolymer in nature, has unique properties that make it a promising material for wound healing, such as biocompatibility, tunable physiochemical characteristics, accessibility, and low cost. 3D bioprinting technology has enabled the production of cellulose-based wound dressings with complex structures that mimic the extracellular matrix. The inclusion of bioactive molecules such as growth factors offers the ability to aid in promoting wound healing, while cellulose creates an ideal environment for controlled release of these biomolecules and moisture retention. The use of 3D bioprinted cellulose-based wound dressings has potential benefits for managing chronic wounds, burns, and painful wounds by promoting wound healing and reducing the risk of infection. This review provides an up-to-date summary of cellulose-based dressings manufactured by 3D bioprinting techniques by looking into wound healing biology, biofabrication methods, cellulose derivatives, and the existing cellulose bioinks targeted toward wound healing.

2.
J Biol Chem ; 299(5): 104612, 2023 05.
Article in English | MEDLINE | ID: mdl-36933808

ABSTRACT

Among the large and diverse collection of tRNA modifications, 7-methylguanosine (m7G) is frequently found in the tRNA variable loop at position 46. This modification is introduced by the TrmB enzyme, which is conserved in bacteria and eukaryotes. However, the molecular determinants and the mechanism for tRNA recognition by TrmB are not well understood. Complementing the report of various phenotypes for different organisms lacking TrmB homologs, we report here hydrogen peroxide sensitivity for the Escherichia coli ΔtrmB knockout strain. To gain insight into the molecular mechanism of tRNA binding by E. coli TrmB in real time, we developed a new assay based on introducing a 4-thiouridine modification at position 8 of in vitro transcribed tRNAPhe enabling us to fluorescently label this unmodified tRNA. Using rapid kinetic stopped-flow measurements with this fluorescent tRNA, we examined the interaction of WT and single substitution variants of TrmB with tRNA. Our results reveal the role of S-adenosylmethionine for rapid and stable tRNA binding, the rate-limiting nature of m7G46 catalysis for tRNA release, and the importance of residues R26, T127, and R155 across the entire surface of TrmB for tRNA binding.


Subject(s)
Escherichia coli , tRNA Methyltransferases , Escherichia coli/metabolism , Guanosine , RNA, Transfer/metabolism , tRNA Methyltransferases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...