Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JOR Spine ; 7(2): e1322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666074

ABSTRACT

Background: Cadaveric intervertebral discs are often studied for a variety of research questions, and outcomes are interpreted in the in vivo context. Unfortunately, the cadaveric disc does not inherently represent the LIVE condition, such that the disc structure (geometry), composition (T2 relaxation time), and mechanical function (opening pressure, OP) measured in the cadaver do not necessarily represent the in vivo disc. Methods: We conducted serial evaluations in the Yucatan minipig of disc geometry, T2 relaxation time, and OP to quantify the changes that occur with progressive dissection and used axial loading to restore the in vivo condition. Results: We found no difference in any parameter from LIVE to TORSO; thus, within 2 h of sacrifice, the TORSO disc can represent the LIVE condition. With serial dissection and sample preparation the disc height increased (SEGMENT height 18% higher than TORSO), OP decreased (POTTED was 67% lower than TORSO), and T2 time was unchanged. With axial loading, an imposed stress of 0.20-0.33 MPa returned the disc to in vivo, LIVE disc geometry and OP, although T2 time was decreased. There was a linear correlation between applied stress and OP, and this was conserved across multiple studies and species. Conclusion: To restore the LIVE disc state in human studies or other animal models, we recommend measuring the OP/stress relationship and using this relationship to select the applied stress necessary to recover the in vivo condition.

2.
J Biomech Eng ; 145(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37255448

ABSTRACT

The meniscus serves important load-bearing functions and protects the underlying articular cartilage. Unfortunately, meniscus tears are common and impair the ability of the meniscus to distribute loads, increasing the risk of developing osteoarthritis. Therefore, surgical repair of the meniscus is a frequently performed procedure; however, repair does not always prevent osteoarthritis. This is hypothesized to be due to altered joint loading post-injury and repair, where the functional deficit of the meniscus prevents it from performing its role of distributing forces. The objective of this study was to quantify joint kinematics in an intact joint, after a meniscus root tear, and after suture repair in cadaveric porcine knees, a frequently used in vivo model. We utilized an magnetic resonance images-compatible loading device and novel use of a T1 vibe sequence to measure meniscus and femur displacements under physiological axial loads. We found that anterior root tear led to large meniscus displacements under physiological axial loading and that suture anchor repair reduced these displacements but did not fully restore intact joint kinematics. After tear and repair, the anterior region of the meniscus moved posteriorly and medially as it was forced out of the joint space under loading, while the posterior region had small displacements as the posterior attachment acted as a hinge about which the meniscus pivoted in the axial plane. Methods from this study can be applied to assess altered joint kinematics following human knee injuries and evaluate repair strategies aimed to restore joint kinematics.


Subject(s)
Meniscus , Osteoarthritis , Tibial Meniscus Injuries , Humans , Swine , Animals , Menisci, Tibial/surgery , Cadaver , Knee Joint , Biomechanical Phenomena , Magnetic Resonance Imaging
3.
JOR Spine ; 6(1): e1243, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994458

ABSTRACT

Background: Intervertebral disc degeneration is often implicated in low back pain; however, discs with structural degeneration often do not cause pain. It may be that disc mechanics can provide better diagnosis and identification of the pain source. In cadaveric testing, the degenerated disc has altered mechanics, but in vivo, disc mechanics remain unknown. To measure in vivo disc mechanics, noninvasive methods must be developed to apply and measure physiological deformations. Aim: Thus, this study aimed to develop methods to measure disc mechanical function via noninvasive MRI during flexion and extension and after diurnal loading in a young population. This data will serve as baseline disc mechanics to later compare across ages and in patients. Materials & Methods: To accomplish this, subjects were imaged in the morning in a reference supine position, in flexion, in extension, and at the end of the day in a supine position. Disc deformations and vertebral motions were used to quantify disc axial strain, changes in wedge angle, and anterior-posterior (A-P) shear displacement. T2 weighted MRI was also used to evaluate disc degeneration via Pfirrmann grading and T2 time. All measures were then tested for effect of sex and disc level. Results: We found that flexion and extension caused level-dependent strains in the anterior and posterior of the disc, changes in wedge angle, and A-P shear displacements. Flexion had higher magnitude changes overall. Diurnal loading did not cause level-dependent strains but did cause small level-dependent changes in wedge angle and A-P shear displacements. Discussion: Correlations between disc degeneration and mechanics were largest in flexion, likely due to the smaller contribution of the facet joints in this condition. Conclusion: In summary, this study established methods to measure in vivo disc mechanical function via noninvasive MRI and established a baseline in a young population that may be compared to older subjects and clinical disorders in the future.

4.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778395

ABSTRACT

The meniscus serves important load-bearing functions and protects the underlying articular cartilage. Unfortunately, meniscus tears are common and impair the ability of the meniscus to distribute loads, greatly increasing the risk for developing osteoarthritis. Therefore, surgical repair of the meniscus is a frequently performed procedure; however, this repair does not always prevent osteoarthritis. This is hypothesized to be due to altered joint loading post injury and repair, where the functional deficit of the meniscus prevents it from performing its role of distributing forces. However, many studies of meniscus function required opening the joint, which alters kinematics. The objective of this study was to use novel MRI methods to image the intact joint under axial load and measure the acute meniscus and femur displacements in an intact joint, after a meniscus root tear, and after suture repair in the porcine knee, a frequently used in vivo model. We found that anterior root tear led to large meniscus and femur displacements under physiological axial loading, and that suture anchor repair reduced these displacements, but did not fully restore intact joint kinematics. After tear and repair, the anterior region of the meniscus moved posteriorly and medially as it was forced out of the joint space under loading, while the posterior region had small displacements as the posterior attachment acted as a hinge about which the meniscus rotated in the axial plane. This technique can be applied to evaluate the effect of knee injuries and to develop improved repair strategies to restore joint kinematics.

5.
Orthop J Sports Med ; 9(11): 23259671211035444, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34796238

ABSTRACT

BACKGROUND: The corrective procedures for meniscal injury are dependent on tear type, severity, and location. Vertical longitudinal tears are common in young and active individuals, but their natural progression and impact on osteoarthritis (OA) development are not known. Root tears are challenging and they often indicate poor outcomes, although the timing and mechanisms of initiation of joint dysfunction are poorly understood, particularly in large-animal and human models. PURPOSE/HYPOTHESIS: In this study, vertical longitudinal and root tears were made in a large-animal model to determine the progression of joint-wide dysfunction. We hypothesized that OA onset and progression would depend on the extent of injury-based load disruption in the tissue, such that root tears would cause earlier and more severe changes to the joint. STUDY DESIGN: Controlled laboratory study. METHODS: Sham surgeries and procedures to create either vertical longitudinal or root tears were performed in juvenile Yucatan mini pigs through randomized and bilateral arthroscopic procedures. Animals were sacrificed at 1, 3, or 6 months after injury and assessed at the joint and tissue level for evidence of OA. Functional measures of joint load transfer, cartilage indentation mechanics, and meniscal tensile properties were performed, as well as histological evaluation of the cartilage, meniscus, and synovium. RESULTS: Outcomes suggested a progressive and sustained degeneration of the knee joint and meniscus after root tear, as evidenced by histological analysis of the cartilage and meniscus. This occurred in spite of spontaneous reattachment of the root, suggesting that this reattachment did not fully restore the function of the native attachment. In contrast, the vertical longitudinal tear did not cause significant changes to the joint, with only mild differences compared with sham surgery at the 6-month time point. CONCLUSION: Given that the root tear, which severs circumferential connectivity and load transfer, caused more intense OA compared with the circumferentially stable vertical longitudinal tear, our findings suggest that without timely and mechanically competent fixation, root tears may cause irreversible joint damage. CLINICAL RELEVANCE: More generally, this new model can serve as a test bed for experimental surgical, scaffold-based, and small molecule-driven interventions after injury to prevent OA progression.

6.
JOR Spine ; 3(3): e1102, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33015575

ABSTRACT

Noninvasive assessments of intervertebral disc health and degeneration are critical for addressing disc degeneration and low back pain. Magnetic resonance imaging (MRI) is exceptionally sensitive to tissue with high water content, and measurement of the MR transverse relaxation time, T 2, has been applied as a quantitative, continuous, and objective measure of disc degeneration that is linked to the water and matrix composition of the disc. However, T 2 measurement is susceptible to inaccuracies due to Rician noise, T 1 contamination, and stimulated echo effects. These error generators can all be controlled for with proper data collection and fitting methods. The objective of this study was to identify sequence parameters to appropriately acquire MR data and to establish curve fitting methods to accurately calculate disc T 2 in the presence of noise by correcting for Rician noise. To do so, we compared T 2 calculated from the typical monoexponential (MONO) fits and noise corrected exponential (NCEXP) fits. We examined how the selected sequence parameters altered the calculated T 2 in silico and in vivo. Typical MONO fits were frequently poor due to Rician noise, and NCEXP fits were more likely to provide accurate T 2 calculations. NCEXP is particularly less biased and less uncertain at low SNR. This study showed that the NCEXP using sequences with data from 20 echoes out to echo times of ~300 ms is the best method for calculating T 2 of discs. By acquiring signal data out to longer echo times and accounting for Rician noise, the curve fitting is more robust in calculating T 2 despite the noise in the data. This is particularly important when considering degenerate discs or AF tissue because the SNR of these regions is lower.

7.
J Orthop Res ; 38(12): 2696-2708, 2020 12.
Article in English | MEDLINE | ID: mdl-32285971

ABSTRACT

The meniscus plays a central load-bearing role in the knee joint. Unfortunately, meniscus injury is common and can lead to joint degeneration and osteoarthritis (OA). In small animal models, progressive degenerative changes occur with the unloading of the meniscus via destabilization of the medial meniscus (DMM). However, few large animal models of DMM exist and the joint-wide initiation of the disease has not yet been defined in these models. Thus, the goal of this study is to develop and validate a large animal model of surgically induced DMM and to use multimodal (mechanical, histological, and magnetic resonance imaging) and multiscale (joint to tissue level) quantitative measures to evaluate degeneration in both the meniscus and cartilage. DMM was achieved using an arthroscopic approach in 13 Yucatan minipigs. One month after DMM, joint contact area decreased and peak pressure increased, indicating altered load transmission as a result of meniscus destabilization. By 3 months, the joint had adapted to the injury and load transmission patterns were restored to baseline, likely due to the formation and maturation of a fibrovascular scar at the anterior aspect of the meniscus. Despite this, we found a decrease in the indentation modulus of the tibial cartilage and an increase in cartilage histopathology scores at 1 month compared to sham-operated animals; these deleterious changes persisted through 3 months. Over this same time course, meniscus remodeling was evident through decreased proteoglycan staining in DMM compared to sham menisci at both 1 and 3 months. These findings support that arthroscopic DMM results in joint degeneration in the Yucatan minipig and provide a new large animal testbed in which to evaluate therapeutics and interventions to treat post-traumatic OA that originates from a meniscal injury.


Subject(s)
Arthritis, Experimental/etiology , Models, Animal , Osteoarthritis/etiology , Tibial Meniscus Injuries/complications , Animals , Arthroscopy , Cartilage, Articular/pathology , Magnetic Resonance Imaging , Male , Swine , Swine, Miniature , Tibial Meniscus Injuries/diagnostic imaging , Tibial Meniscus Injuries/pathology , Tibial Meniscus Injuries/physiopathology , X-Ray Microtomography
8.
J Biomech ; 61: 18-25, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28720201

ABSTRACT

A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response.


Subject(s)
Mechanical Phenomena/drug effects , Tendons/drug effects , Tendons/metabolism , Animals , Biomechanical Phenomena/drug effects , Buffers , Dose-Response Relationship, Drug , Polyethylene Glycols/chemistry , Rats , Sodium Chloride/chemistry , Solutions , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...