Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 39(1): 115-128, 2021 01.
Article in English | MEDLINE | ID: mdl-33166420

ABSTRACT

Mesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.


Subject(s)
Cellular Reprogramming/immunology , Macrophages/immunology , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Animals , Cellular Reprogramming/genetics , Heterografts , Humans , Mesenchymal Stem Cell Transplantation , Mice
3.
Stem Cells Transl Med ; 9(10): 1137-1146, 2020 10.
Article in English | MEDLINE | ID: mdl-32531111

ABSTRACT

Ongoing neuroinflammation may contribute to symptoms of autism spectrum disorder (ASD) in at least a portion of affected individuals. Mesenchymal stromal cells (MSCs) have demonstrated the capacity to modulate neuroinflammation, but safety and feasibility of MSC administration in children with ASD have not been well established. In this open-label, phase I study, 12 children with ASD between 4 and 9 years of age were treated with intravenous (IV) infusions of human cord tissue mesenchymal stromal cells (hCT-MSCs), a third-party MSC product manufactured from unrelated donor umbilical cord tissue. Children received one, two, or three doses of 2 × 106 cells per kilogram at 2-month intervals. Clinical and laboratory evaluations were performed in person at baseline and 6 months and remotely at 12 months after the final infusion. Aside from agitation during the IV placement and infusion in some participants, hCT-MSCs were well tolerated. Five participants developed new class I anti-human leukocyte antigen (HLA) antibodies, associated with a specific lot of hCT-MSCs or with a partial HLA match between donor and recipient. These antibodies were clinically silent and not associated with any clinical manifestations to date. Six of 12 participants demonstrated improvement in at least two ASD-specific measures. Manufacturing and administration of hCT-MSCs appear to be safe and feasible in young children with ASD. Efficacy will be evaluated in a subsequent phase II randomized, placebo-controlled clinical trial.


Subject(s)
Autism Spectrum Disorder/therapy , Mesenchymal Stem Cell Transplantation/methods , Umbilical Cord/transplantation , Child , Child, Preschool , Female , Humans , Male
4.
Cytotherapy ; 16(11): 1545-1557, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24972743

ABSTRACT

BACKGROUND AIMS: Delivery of cell-based therapies through the carotid artery with the use of an intra-arterial catheter could introduce aggregates and cause focal ischemia in the brain. We developed a pulse-width flow cytometry method for aggregate detection and quantification. The assay was designed to be used as a cell product release assay in a clinical trial seeking to treat ischemic stroke with sorted cells brightly expressing aldehyde dehydrogenase (ALDH(br) cells) delivered through intra-arterial catheters. METHODS: The forward light scatter pulse-width axis of a flow cytometer was calibrated for particle diameter measurements through the use of traceable standard microspheres and linear regression. As a positive control, Concanavalin A-aggregated cells were counted manually and sorted onto slides to compare with pulse width-determined values. Known numbers of aggregates were spiked into purified singlet cells for quantification. A clinical standard for aggregate count and diameter was determined. The assay was used to qualify catheters with the use of ALDH(br) cells. RESULTS: The pulse-width axis was highly linear for microsphere diameter (r(2) > 0.99), which allowed for size calibration. Microscopically determined counts and diameters corresponded to pulse width-determined values. Known aggregate counts were linear with pulse width-determined aggregate counts (r(2) = 0.98). The limit of detection was determined to be 0.004%. Flow of ALDH(br) cells through catheters did not generate aggregates. The final method to be used as a release assay for the stroke clinical trial was tested successfully on samples from volunteer donors. CONCLUSIONS: The pulse-width aggregate detection assay provides a reliable, reproducible, accurate and rapid means of detection, classification and quantification of aggregates in cell therapy products.


Subject(s)
Aldehyde Dehydrogenase/biosynthesis , Brain Ischemia/diagnosis , Cell Aggregation , Cell- and Tissue-Based Therapy/adverse effects , Flow Cytometry , Stroke/pathology , Aldehyde Dehydrogenase/isolation & purification , Bone Marrow Cells/pathology , Brain Ischemia/immunology , Catheters/adverse effects , Gene Expression Regulation , Humans , Limit of Detection , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...