Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Mech Behav Biomed Mater ; 131: 105233, 2022 07.
Article in English | MEDLINE | ID: mdl-35504197

ABSTRACT

The demand for revision knee replacement (RKR) has increased dramatically with rising patient life expectancy and younger recipients for primary TKR. However, significant challenges to RKR arise from osseous defects, reduced bone quality, potential bone volume loss from implant removal and the need to achieve implant stability. This study utilizes the outcomes of an ongoing RKR clinical trial using porous metaphyseal cones 3D-printed of titanium, to investigate 1) bone mineral density (BMD) changes in three fixation zones (epiphysis, metaphysis, and diaphysis) over a year and 2) the biomechanical effects of the cones at 6 months post-surgery. It combines dual-energy x-ray absorptiometry (DXA), computed tomography (CT) with patient-specific based finite element (FE) modelling. Bone loss (-0.086 ± 0.05 g/cm2) was found in most patients over the first year. The biomechanical assessment considered four different loading scenarios from standing, walking on a flat surface, and walking downstairs, to a simulated impact of the knee. The patient-specific FE models showed that the cones marginally improved the strain distribution in the bone and shared the induced load but played a limited role in reducing the risks of bone fracture or cement debonding. This technique of obtaining real live data from a randomized clinical trial and inserting it into an in-silico FE model is unique and innovative in RKR research. The tibia RKR biomechanics examined open up further possibilities, allowing the in-silico testing of prototypes and implant combinations without putting patients at risk as per the recommended IDEAL framework standards. This process with further improvements could allow rapid innovation, optimization of implant design, and improve surgical planning.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Arthroplasty, Replacement, Knee/adverse effects , Biomechanical Phenomena , Humans , Knee Joint/surgery , Prosthesis Design , Reoperation/methods , Tibia/diagnostic imaging , Tibia/surgery
2.
Analyst ; 146(13): 4242-4253, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34096935

ABSTRACT

The interface between the intervertebral disc and the vertebral body is important to the discs' biomechanics and physiology, and is widely implicated in its pathology. This study aimed to explore biochemically and structurally the bony endplate, cartilage endplate and intervertebral disc, below the nucleus and below the annulus in healthy bovine tails. Multiphoton imaging and spontaneous Raman spectroscopy were employed. Raman spectroscopy provided relative quantification of mineral and matrix components across the vertebral endplate and its adjacent areas with microscopic spatial resolution. Microscopy utilising second-harmonic generation (SHG) and two-photon fluorescence (TPF) allowed for the structural identification of distinct endplate regions. The cartilage endplate was revealed as structurally distinct from both the bone and disc, supporting its biomechanical function as a transition zone between the soft and hard tissue components. The collagen fibres were continuous across the tidemark which defines the interface between the mineralised and non-mineralised regions of the endplate. Raman spectroscopy revealed gradients in phosphate and carbonate content through the depth of the endplate and also differences beneath the nucleus and annulus consistent with a higher rate of remodelling under the annulus.


Subject(s)
Intervertebral Disc , Spectrum Analysis, Raman , Animals , Biomechanical Phenomena , Cartilage , Cattle , Microscopy
3.
PLoS One ; 14(10): e0222523, 2019.
Article in English | MEDLINE | ID: mdl-31600225

ABSTRACT

The development of automatic methods for segmenting anatomy from medical images is an important goal for many medical and healthcare research areas. Datasets that can be used to train and test computer algorithms, however, are often small due to the difficulties in obtaining experts to segment enough examples. Citizen science provides a potential solution to this problem but the feasibility of using the public to identify and segment anatomy in a medical image has not been investigated. Our study therefore aimed to explore the feasibility, in terms of performance and motivation, of using citizens for such purposes. Public involvement was woven into the study design and evaluation. Twenty-nine citizens were recruited and, after brief training, asked to segment the spine from a dataset of 150 magnetic resonance images. Participants segmented as many images as they could within three one-hour sessions. Their accuracy was evaluated by comparing them, as individuals and as a combined consensus, to the segmentations of three experts. Questionnaires and a focus group were used to determine the citizens' motivation for taking part and their experience of the study. Citizen segmentation accuracy, in terms of agreement with the expert consensus segmentation, varied considerably between individual citizens. The citizen consensus, however, was close to the expert consensus, indicating that when pooled, citizens may be able to replace or supplement experts for generating large image datasets. Personal interest and a desire to help were the two most common reasons for taking part in the study.


Subject(s)
Citizen Science/methods , Health Services Research/methods , Motivation , Spine/diagnostic imaging , Adolescent , Adult , Aged , Algorithms , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Software , Young Adult
4.
Spine Deform ; 7(4): 517-524, 2019 07.
Article in English | MEDLINE | ID: mdl-31202366

ABSTRACT

STUDY DESIGN: Feasibility study on characterizing thoracic vertebral shape from magnetic resonance images using a shape model. OBJECTIVES: Assess the reliability of characterizing thoracic vertebral shape from magnetic resonance images and estimate the normal variation in vertebral shape using a shape model. SUMMARY OF BACKGROUND DATA: The characterization of thoracic vertebra shape is important for understanding the initiation and progression of deformity and in developing surgical methods. Methods for characterizing shape need to be comprehensive, reliable, and suitable for use in vivo. METHODS: Magnetic resonance images of the thoracic vertebrae were acquired from 20 adults. Repeat scans were acquired, after repositioning the participants, for T4, T8, and T12. Landmark points were placed around the vertebra on the images and used to create a shape model. The reliability was assessed using relative error (E%) and intraclass correlation (ICC). The effect of vertebral level, sex and age on vertebral shape was assessed using repeated measures analysis of variance. RESULTS: Five modes of variation were retained from the shape model. Reliability was excellent for the first two modes (mode 1: E% = 7, ICC = 0.98; mode 2: E% = 11, ICC = 0.96). These modes described variation in the vertebral bodies, the pedicle width and orientation, and the facet joint position and orientation with respect to the pedicle axis. Variation in vertebral shape was found along the thoracic spine and between individuals, but there was little effect of age and sex. CONCLUSIONS: Magnetic resonance images and shape modeling provides a reliable method for characterizing vertebral shape in vivo. The method is able to identify differences between vertebral levels and between individuals. The use of these methods may be advantageous for performing repeated measurements in longitudinal studies. LEVEL OF EVIDENCE: N/A.


Subject(s)
Magnetic Resonance Imaging , Thoracic Vertebrae , Adult , Feasibility Studies , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Middle Aged , Models, Statistical , Reproducibility of Results , Thoracic Vertebrae/anatomy & histology , Thoracic Vertebrae/diagnostic imaging , Young Adult
5.
Biomech Model Mechanobiol ; 18(6): 1979-1986, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31222527

ABSTRACT

The main function of the intervertebral disc is biomechanical function, since it must resist repetitive high loadings, while giving the spine its flexibility and protecting the spinal cord from over-straining. It partially owes its mechanical characteristics to the lamellar architecture of its outer layer, the annulus fibrosus. Today, no non-invasive means exist to characterize annulus lamellar structure in vivo. The aim of this work was to test the feasibility of imaging annulus fibrosus microstructure in vivo with ultrasonography. Twenty-nine healthy adolescents were included. Ultrasonographies of L3-L4 disc were acquired with a frontal approach. Annulus fibrosus was segmented in the images to measure the thickness of the lamellae. To validate lamellar appearance in ultrasonographies, multimodality images of two cow tail discs were compared: ultrasonography, magnetic resonance and optical microscopy. In vivo average lamellar thickness was 229.7 ± 91.5 µm, and it correlated with patient body mass index and age. Lamellar appearance in the three imaging modalities in vitro was consistent. Lamellar measurement uncertainty was 7%, with good agreement between two operators. Feasibility of ultrasonography for the analysis of lumbar annulus fibrosus structure was confirmed. Further work should aim at validating measurement reliability, and to assess the relevance of the method to characterize annulus alterations, for instance in disc degeneration or scoliosis.


Subject(s)
Annulus Fibrosus/diagnostic imaging , Ultrasonography , Adolescent , Animals , Cattle , Child , Feasibility Studies , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Male , Multimodal Imaging
6.
J Radiol Prot ; 39(1): 38-53, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30569898

ABSTRACT

PURPOSE: Primarily to evaluate the radiation dose delivered to patients with obesity in projection radiography and its relationship to the patient's size. A secondary purpose is to estimate the subsequent projected radiation-related lifetime cancer risk to patients with obesity compared to normal-weight patients. METHOD AND MATERIAL: Data from 1964 patients from a bariatric clinic in the UK were reviewed with the relevant permission. 630 patients were identified to have a projection radiography history and were included in the study. Patients' dose area product (DAP) data were collected for all projection radiography. Multiple exams in one day including a single DAP reading and exams with no records of DAP and exposure factors were excluded. Correlations were calculated and data analysed to yield the third quartile for each examination using STATA 14. Absorbed doses were generated from PCXMC simulation, utilising DAP data from this study and the UK national diagnostic reference level (NDRL), to calculate the effective risk for patients with obesity compared to patients with normal-weight. RESULTS: Patients with obesity received higher DAPs for all examinations included in this study compared to NDRL. Abdominal and lumbar spine radiographs DAPs were the highest (17.6 and 30.31 Gy cm2) compared to the NDRL (2.5 and 4 Gy cm2). Only moderate to low correlations were found between patient's size and DAPs in the abdomen and chest radiographs. The projected radiation-related lifetime cancer risk for patients with obesity is up to 153% higher than for adult patients with normal weight. CONCLUSION: Patients with obesity receive higher DAPs than normal-weight adults which may be in excess of that expected due to their size. Therefore, radiation-related lifetime cancer risk is increased in patients with obesity as a result of medical radiation exposures. This indicates more dose optimisation research is needed in this group of patients to reduce dose rate and variation.


Subject(s)
Neoplasms/epidemiology , Neoplasms/etiology , Obesity/complications , Radiation Dosage , Radiation Exposure/adverse effects , Radiography/adverse effects , Radiography/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Assessment , Risk Factors , Young Adult
7.
BMJ Open Sport Exerc Med ; 4(1): e000374, 2018.
Article in English | MEDLINE | ID: mdl-30057776

ABSTRACT

OBJECTIVE: Lifting postures are frequently implicated in back pain. We previously related responses to a static load with intrinsic spine shape, and here we investigate the role of lumbar spine shape in lifting kinematics. METHODS: Thirty healthy adults (18-65 years) performed freestyle, stoop and squat lifts with a weighted box (6-15 kg, self-selected) while being recorded by Vicon motion capture. Internal spine shape was characterised using statistical shape modelling (SSM) from standing mid-sagittal MRIs. Associations were investigated between spine shapes quantified by SSM and peak flexion angles. RESULTS: Two SSM modes described variations in overall lumbar curvature (mode 1 (M1), 55% variance) and the evenness of curvature distribution (mode 2 (M2), 12% variance). M1 was associated with greater peak pelvis (r=0.38, p=0.04) and smaller knee flexion (r=-0.40, p=0.03) angles; individuals with greater curviness preferred to lift with a stooped lifting posture. This was confirmed by analysis of those individuals with very curvy or very straight spines (|M1|>1 SD). There were no associations between peak flexion angles and mode scores in stoop or squat trials (p>0.05). Peak flexion angles were positively correlated between freestyle and squat trials but not between freestyle and stoop or squat and stoop, indicating that individuals adjusted knee flexion while maintaining their preferred range of lumbar flexion and that 'squatters' adapted better to different techniques than 'stoopers'. CONCLUSION: Spinal curvature affects preferred lifting styles, and individuals with curvier spines adapt more easily to different lifting techniques. Lifting tasks may need to be tailored to an individual's lumbar spine shape.

8.
Exp Gerontol ; 103: 101-106, 2018 03.
Article in English | MEDLINE | ID: mdl-29326089

ABSTRACT

BACKGROUND: Oxidative stress (OS) negatively affects skeletal muscle homeostasis in experimental models of ageing. However, little is known about the associations between circulating OS markers and parameters of muscle mass and function, and their responses to exercise training, in humans. METHODS: Maximal voluntary contraction (MVC, primary outcome) and isokinetic torque of the knee extensors at 30°â€¯s-1 (MIT), muscle cross-sectional area (MCSA) and quality (MQ, secondary outcomes), and plasma concentrations of malondialdehyde (MDA, pro-OS), homocysteine (HCY, pro-OS), taurine (TAU, anti-OS), and protein sulphydryl groups (PSH, anti-OS) were measured in 27 healthy older males and 23 females at baseline and after an 18-week resistance exercise program, with or without a nutritional intervention (fish oil vs. placebo). RESULTS: After adjusting for age, glomerular filtration rate, and nutritional intervention, there were no significant correlations between baseline OS markers and muscle parameters, barring a positive association between TAU and MIT in females (r = 0.53, P = .035) and between MDA and MCSA in males (r = 0.69, P = .001). Training did not significantly change OS markers, except for a reduction in MDA in females (-0.27 µmol/L, 95% CI -0.51 to -0.02, P = .034). In females, there were significant correlations between baseline MDA and exercise-induced changes in MVC (P = .018), baseline TAU and changes in MCSA (P = .026), and baseline HCY and changes in MCSA (P = .046) and MQ (P = .022). In males, baseline MDA was significantly associated with exercise-induced changes in MVC (P = .040). CONCLUSIONS: Plasma MDA, HCY, and TAU were significantly associated with baseline and/or exercise-induced changes in muscle mass and function in healthy older adults, primarily in females. Pending further confirmation in other populations, specific OS markers, particularly MDA, might predict muscle responses to resistance exercise programs in old age.


Subject(s)
Aging/physiology , Biomarkers/blood , Muscle, Skeletal/physiology , Oxidative Stress , Resistance Training , Aged , Cross-Sectional Studies , Female , Humans , Knee , Male , Organ Size , Torque
9.
J Biomech ; 70: 134-139, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29037442

ABSTRACT

Finite element (FE) models driven by medical image data can be used to estimate subject-specific spinal biomechanics. This study aimed to combine magnetic resonance (MR) imaging and quantitative fluoroscopy (QF) in subject-specific FE models of upright standing, flexion and extension. Supine MR images of the lumbar spine were acquired from healthy participants using a 0.5 T MR scanner. Nine 3D quasi-static linear FE models of L3 to L5 were created with an elastic nucleus and orthotropic annulus. QF data was acquired from the same participants who performed trunk flexion to 60° and trunk extension to 20°. The displacements and rotations of the vertebrae were calculated and applied to the FE model. Stresses were averaged across the nucleus region and transformed to the disc co-ordinate system (S1 = mediolateral, S2 = anteroposterior, S3 = axial). In upright standing S3 was predicted to be -0.7 ±â€¯0.6 MPa (L3L4) and -0.6 ±â€¯0.5 MPa (L4L5). S3 increased to -2.0 ±â€¯1.3 MPa (L3L4) and -1.2 ±â€¯0.6 MPa (L4L5) in full flexion and to -1.1 ±â€¯0.8 MPa (L3L4) and -0.7 ±â€¯0.5 MPa (L4L5) in full extension. S1 and S2 followed similar patterns; shear was small apart from S23. Disc stresses correlated to disc orientation and wedging. The results demonstrate that MR and QF data can be combined in a participant-specific FE model to investigate spinal biomechanics in vivo and that predicted stresses are within ranges reported in the literature.


Subject(s)
Finite Element Analysis , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiology , Patient-Specific Modeling , Adult , Biomechanical Phenomena , Fluoroscopy , Humans , Linear Models , Magnetic Resonance Imaging , Middle Aged , Motion , Posture/physiology , Range of Motion, Articular , Torso/physiology , Weight-Bearing , Young Adult
10.
J Biomech ; 70: 82-87, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29029957

ABSTRACT

The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs.


Subject(s)
Lumbar Vertebrae/physiology , Models, Biological , Muscle, Skeletal/physiology , Torso/physiology , Biomechanical Phenomena , Computer Simulation , Finite Element Analysis , Humans , Pelvis/physiology , Posture/physiology , Rotation
11.
Acta Biomater ; 63: 274-282, 2017 11.
Article in English | MEDLINE | ID: mdl-28917706

ABSTRACT

Needle puncture of the intervertebral disc can initiate a mechanical and biochemical cascade leading to disc degeneration. Puncture's mechanical effects have been shown near the puncture site, mechanical effects should be observed far, relative to needle size, from the puncture site, given the disc-wide damage induced by the stab. The aim of this work was to quantify these far-field effects, and to observe the local structural damage provoked by the needle. Strips of cow tail annulus fibrosus underwent two consecutive mechanical loadings to 5% tensile strain; fifteen samples were punctured in a radial direction with a randomly assigned needle between the two loadings (needle gauges between 19 and 23). Ten samples (control group) were not punctured. During loading, the tissue strains were imaged using second harmonic generation microscopy in a <600×800µm region about 4.4mm from the puncture site. After mechanical testing, the puncture site was imaged in 3D. Puncture had no significant effect on annulus elastic modulus. Imaging showed a modest change in the shearing between fibre bundles however, the linear strain between bundles, intra-bundle shear and linear strain were not significantly affected. At the puncture site, detached lumps of tissue were present. These results suggest that the mechanical effects observed in intact discs are due to the depressurization of the disc, rather than the local damage to the annulus. Needle profiles could be designed, aiming at separating fibre bundles rather than cutting through them, to avoid leaving dying tissue behind. STATEMENT OF SIGNIFICANCE: Needle puncture of the intervertebral disc can initiate a mechanical and biochemical cascade leading to disc degeneration, but the link between the local damage of the puncture and the disc-wide effects is not well understood. This work aimed at determining the micro-mechanical effects of the puncture far from its site, and to observe the damage induced by the puncture with high resolution imaging. Results show that the puncture had modest effect far from the puncture, but lumps of tissue were left by the needle, detached from the disc; these could cause further damage through friction and inflammation of the surrounding tissues. This suggests that the cascade leading to degeneration is probably driven by a biochemical response rather than disc-wide mechanical effects.


Subject(s)
Annulus Fibrosus/physiology , Needles , Animals , Biomechanical Phenomena , Cattle , Elastic Modulus , Imaging, Three-Dimensional
12.
BMJ Open Sport Exerc Med ; 3(1): e000249, 2017.
Article in English | MEDLINE | ID: mdl-28761720

ABSTRACT

BACKGROUND: We previously measured the rate of regaining muscle strength during rehabilitation of lower leg muscles in patients following lower leg casting. Our primary aim in this study was to measure the rate of gain of strength in healthy individuals undergoing a similar training regime. Our secondary aim was to test the ability of MRI to provide a biomarker for muscle function. METHODS: Men and women were recruited in three age groups: 20-30, 50-65 and over 70 years. Their response to resistance training of the right lower leg twice a week for 8 weeks was monitored using a dynamometer and MRI of tibialis anterior, soleus and gastrocnemius muscles at 2 weekly intervals to measure muscle size (anatomical cross-sectional area (ACSA)) and quality (T2 relaxation). Forty-four volunteers completed the study. RESULTS: Baseline strength declined with age. Training had no effect in middle-aged females or in elderly men in dorsiflexion. Other groups significantly increased both plantarflexion and dorsiflexion strength at rates up to 5.5 N m week-1 in young females in plantarflexion and 1.25 N m week-1 in young males in dorsiflexion. No changes were observed in ACSA or T2 in any age group in any muscle. CONCLUSION: Exercise training improves muscle strength in males at all ages except the elderly in dorsiflexion. Responses in females were less clear with variation across age and muscle groups. These results were not reflected in simple MRI measures that do not, therefore, provide a good biomarker for muscle atrophy or the efficacy of rehabilitation.

13.
J Back Musculoskelet Rehabil ; 30(4): 717-724, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28453450

ABSTRACT

BACKGROUND: Exercise of the spinal muscles is recommended for a variety of rehabilitative reasons but it is not always clear whether interventions are effective in improving the performance of the muscles or whether their benefit is elicited via other mechanisms. OBJECTIVE: To explore the effects of an exercise intervention on the size and exercise performance of the lumbar spine extensor muscles. METHODS: Eleven healthy participants undertook a four week programme of exercise. Magnetic resonance imaging and phosphorus spectroscopy were performed before and after the intervention to determine the time to fatigue and phosphocreatine (PCr) depletion during a muscle endurance test (modified Biering-Sørensen) together with muscle cross-sectional area (CSA). RESULTS: The post intervention measures were significantly different to the pre-intervention results for the time to fatigue (post-pre: 20.5 ± 22.7 s (P= 0.014)) and PCr depletion both at the point of fatigue (post-pre: 9.5 ± 11.9% (P= 0.024)) and at a matched time-point (post-pre: 12.2 ± 11.9% (P= 0.007)). CSA was not significantly different in any muscle. CONCLUSIONS: Exercise improved the performance of the trunk muscles despite no impact on CSA. This demonstrated the importance of obtaining a wide range of measures when assessing the effectiveness of exercise intervention programmes.


Subject(s)
Back Muscles/physiology , Exercise Therapy , Exercise/physiology , Lumbar Vertebrae/physiology , Adolescent , Adult , Back Muscles/diagnostic imaging , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Lumbosacral Region , Magnetic Resonance Imaging , Male , Muscle, Skeletal , Phosphocreatine/metabolism , Torso , Young Adult
14.
Biomech Model Mechanobiol ; 16(4): 1475-1484, 2017 08.
Article in English | MEDLINE | ID: mdl-28378119

ABSTRACT

The complex structure of the annulus fibrosus is strongly related to its mechanical properties. Recent work showed that it is possible to observe the relative movement of fibre bundles in loaded cow tail annulus; the aim of this work was to describe and quantify annulus fibrosus micromechanics in degenerated human disc, and compare it with cow tail annulus, an animal model often used in the literature. Second harmonic generation was used to image the collagen matrix in twenty strips of annulus fibrosus harvested from intervertebral disc of seven patients undergoing surgery. Samples were loaded to 6% tensile strain in 1% steps. Elastic modulus was calculated from loading curves, and micromechanical strains were calculated from the images using custom software. The same protocol was applied to twenty strips of annulus harvested from cow tail discs. Significant morphological differences were found between human and cow tail samples, the most striking being the lack of collagen fibre crimp in the former. Fibres were also observed bending and running from one lamella to the other, forming a strong flexible interface. Interdigitation of fibre bundles was also present at this interface. Quantitative results show complex patterns of inter-bundle and inter-lamellar behaviour, with inter-bundle sliding being the main strain mechanism. Elastic modulus was similar between species, and it was not affected by the degree of degeneration. This work gives an insight into the complex structure and mechanical function of the annulus fibrosus, which should be accounted for in disc numerical modelling.


Subject(s)
Annulus Fibrosus/pathology , Models, Biological , Animals , Annulus Fibrosus/cytology , Annulus Fibrosus/ultrastructure , Cattle , Collagen/analysis , Elastic Modulus , Humans , Intervertebral Disc Degeneration/pathology , Software
15.
Am J Clin Nutr ; 105(1): 151-158, 2017 01.
Article in English | MEDLINE | ID: mdl-27852617

ABSTRACT

BACKGROUND: Resistance exercise increases muscle mass and function in older adults, but responses are attenuated compared with younger people. Data suggest that long-chain n-3 polyunsaturated fatty acids (PUFAs) may enhance adaptations to resistance exercise in older women. To our knowledge, this possibility has not been investigated in men. OBJECTIVE: We sought to determine the effects of long-chain n-3 PUFA supplementation on resistance exercise training-induced increases in muscle mass and function and whether these effects differ between older men and women. DESIGN: Fifty men and women [men: n = 27, mean ± SD age: 70.6 ± 4.5 y, mean ± SD body mass index (BMI; in kg/m2): 25.6 ± 4.2; women: n = 23, mean ± SD age: 70.7 ± 3.3 y, mean ± SD BMI: 25.3 ± 4.7] were randomly assigned to either long-chain n-3 PUFA (n = 23; 3 g fish oil/d) or placebo (n = 27; 3 g safflower oil/d) and participated in lower-limb resistance exercise training twice weekly for 18 wk. Muscle size, strength, and quality (strength per unit muscle area), functional abilities, and circulating metabolic and inflammatory markers were measured before and after the intervention. RESULTS: Maximal isometric torque increased after exercise training to a greater (P < 0.05) extent in the long-chain n-3 PUFA group than in the placebo group in women, with no differences (P > 0.05) between groups in men. In both sexes, the effect of exercise training on maximal isokinetic torque at 30, 90, and 240° s-1, 4-m walk time, chair-rise time, muscle anatomic cross-sectional area, and muscle fat did not differ (P > 0.05) between groups. There was a greater (P < 0.05) increase in muscle quality in women after exercise training in the long-chain n-3 PUFA group than in the placebo group, with no such differences in men (P > 0.05). Long-chain n-3 PUFAs resulted in a greater decrease (P < 0.05) than the placebo in plasma triglyceride concentrations in both sexes, with no differences (P > 0.05) in glucose, insulin, or inflammatory markers. CONCLUSION: Long-chain n-3 PUFA supplementation augments increases in muscle function and quality in older women but not in older men after resistance exercise training. This trial was registered at clinicaltrials.gov as NCT02843009.


Subject(s)
Adaptation, Physiological/drug effects , Dietary Fats/pharmacology , Dietary Supplements , Fish Oils/pharmacology , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Resistance Training , Adipose Tissue , Aged , Body Composition/drug effects , Body Mass Index , Dietary Fats/blood , Exercise/physiology , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/pharmacology , Female , Fish Oils/blood , Humans , Lower Extremity , Male , Movement , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Sex Factors , Torque , Triglycerides/blood
16.
Physiol Rep ; 4(12)2016 Jun.
Article in English | MEDLINE | ID: mdl-27354538

ABSTRACT

Resistance exercise training is known to be effective in increasing muscle mass in older people. Acute measurement of protein metabolism data has indicated that the magnitude of response may differ between sexes. We compared adaptive responses in muscle mass and function to 18 weeks resistance exercise training in a cohort of older (>65 years) men and women. Resistance exercise training improved knee extensor maximal torque, 4 m walk time, time to complete five chair rises, muscle anatomical cross-sectional area (ACSA) and muscle quality with no effect on muscle fat/water ratio or plasma glucose, insulin, triacylglycerol, IL-6, and TNF-α Differences between sexes were observed for knee extensor maximal torque and muscle quality with greater increases observed in men versus women (P < 0.05). Maximal torque increased by 15.8 ± 10.6% in women and 41.7 ± 25.5% in men, whereas muscle quality increased by 8.8 ± 17.5% in women and by 33.7 ± 25.6% in men. In conclusion, this study has demonstrated a difference in the magnitude of adaptation, of some of the outcome measures employed, in response to 18 weeks of resistance exercise training between men and women. The mechanisms underlying this observation remain to be established.


Subject(s)
Adaptation, Physiological , Muscle, Skeletal/physiology , Resistance Training , Aged , Blood Glucose/metabolism , Female , Humans , Insulin/blood , Interleukin-6/blood , Male , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Sex Factors , Torque , Triglycerides/blood , Tumor Necrosis Factor-alpha/blood
17.
Acta Biomater ; 37: 14-20, 2016 06.
Article in English | MEDLINE | ID: mdl-27063647

ABSTRACT

UNLABELLED: The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. STATEMENT OF SIGNIFICANCE: The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical behaviour of the disc's outer layer using second harmonic generation, a technique which allowed us to visualize, with unprecedented detail, how bundles of collagen fibres slide relative to each other when loaded. Our results will help further the development of new multiscale numerical models and repairing techniques.


Subject(s)
Annulus Fibrosus/physiology , Animals , Annulus Fibrosus/anatomy & histology , Biomechanical Phenomena , Cattle , Stress, Mechanical
18.
J Biomech ; 49(6): 919-925, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26924661

ABSTRACT

Finite element (FE) modelling is an established technique for investigating spinal biomechanics. Using image data to produce FE models with subject-specific geometry and displacement boundary conditions may help extend their use to the assessment spinal loading in individuals. Lumbar spine magnetic resonance images from nine participants in the supine, standing and sitting postures were obtained and 2D poroelastic FE models of the lumbar spine were created from the supine data. The rigid body translation and rotation of the vertebral bodies as the participant moved to standing or sitting were applied to the model. The resulting pore pressure in the centre of the L4/L5 disc was determined and the sensitivity to the material properties and vertebral body displacements was assessed. Although the limitations of using a 2D model mean the predicted pore pressures are unlikely to be accurate, the results showed that subject-specific variation in geometry and motion during postural change leads to variation in pore pressure. The model was sensitive to the Young׳s modulus of the annulus matrix, the permeability of the nucleus, and the vertical translation of the vertebrae. This study demonstrates the feasibility of using image data to drive subject-specific lumbar spine FE models and indicates where further development is required to provide a method for assessing spinal biomechanics in a wide range of individuals.


Subject(s)
Lumbar Vertebrae/physiology , Adult , Biomechanical Phenomena , Elastic Modulus , Finite Element Analysis , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Posture , Pressure , Range of Motion, Articular , Weight-Bearing , Young Adult
19.
Eur Spine J ; 23 Suppl 1: S26-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24413745

ABSTRACT

PURPOSE: We have previously shown that the lumbar spine has an intrinsic shape specific to the individual and characteristic of sitting, standing and supine postures. The purpose of this study was to test the hypothesis that this intrinsic shape is detectable throughout a range of postures from extension to full flexion in healthy adults. METHODS: Sagittal images of the lumbar spine were taken using a positional MRI with participants (n = 30) adopting six postures: seated extension, neutral standing, standing with 30, 45 and 60° and full flexion. Active shape modelling (ASM) was used to identify and quantify 'modes' of variation in the shape of the lumbar spine. RESULTS: ASM showed that 89.5% of the variation in the shape of the spine could be explained by the first two modes; describing the overall curvature and the distribution of curvature of the spine. Mode scores were significantly correlated between all six postures (modes 1-9, r = 0.4-0.97, P < 0.05), showing that an element of intrinsic shape was maintained when changing postures. The spine was most even in seated extension (P < 0.001) and most uneven between 35 and 45° flexion (P < 0.05). CONCLUSIONS: This study shows that an individual's intrinsic lumbar spine shape is quantifiable and detectable throughout lumbar flexion and extension. These findings will enable the role of lumbar curvature in injury and low back pain to be assessed in the clinic and in the working and recreational environments.


Subject(s)
Lumbar Vertebrae/anatomy & histology , Posture , Range of Motion, Articular , Adolescent , Adult , Female , Healthy Volunteers , Humans , Lumbar Vertebrae/physiology , Magnetic Resonance Imaging , Male , Middle Aged , Models, Statistical , Principal Component Analysis , Young Adult
20.
J Anat ; 222(6): 608-14, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23600615

ABSTRACT

A previous modelling study predicted that the forces applied by the extensor muscles to stabilise the lumbar spine would be greater in spines that have a larger sagittal curvature (lordosis). Because the force-generating capacity of a muscle is related to its size, it was hypothesised that the size of the extensor muscles in a subject would be related to the size of their lumbar lordosis. Magnetic resonance imaging (MRI) data were obtained, together with age, height, body mass and back pain status, from 42 female subjects. The volume of the extensor muscles (multifidus and erector spinae) caudal to the mid-lumbar level was estimated from cross-sectional area measurements in axial T1-weighted MRIs spanning the lumbar spine. Lower lumbar curvature was determined from sagittal T1-weighted images. A stepwise linear regression model was used to determine the best predictors of muscle volume. The mean lower lumbar extensor muscle volume was 281 cm(3) (SD = 49 cm(3)). The mean lower lumbar curvature was 30 ° (SD = 7 °). Five subjects reported current back pain and were excluded from the regression analysis. Nearly half the variation in muscle volume was accounted for by the variables age (standardised coefficient, B = -3.2, P = 0.03) and lower lumbar curvature (B = 0.47, P = 0.002). The results support the hypothesis that extensor muscle volume in the lower lumbar spine is related to the magnitude of the sagittal curvature; this has implications for assessing muscle size as an indicator of muscle strength.


Subject(s)
Muscle Strength/physiology , Paraspinal Muscles/physiology , Spinal Curvatures , Adult , Aged , Female , Humans , Low Back Pain/pathology , Lumbosacral Region , Magnetic Resonance Imaging , Middle Aged , Paraspinal Muscles/anatomy & histology , Regression Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...