Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Invest Dermatol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38570030

ABSTRACT

BACE1 is well-known for its role in the development of Alzheimer's disease. Recent publications, including our own, have demonstrated a role for this enzyme in other chronic diseases. The aim of this study was to investigate the role of BACE1 in the autoimmune disease systemic sclerosis (SSc). BACE1 protein levels were elevated in the skin of patients with SSc. Inhibition of BACE1 with small-molecule inhibitors or small interfering RNA blocked SSc and fibrotic stimuli-mediated fibroblast activation. Furthermore, we show that BACE1 regulation of dermal fibroblast activation is dependent on ß-catenin and Notch signaling. The neurotropic factor brain-derived neurotrophic factor negatively regulates BACE1 expression and activity in dermal fibroblasts. Finally, sera from patients with SSc show higher ß-amyloid and lower brain-derived neurotrophic factor levels than healthy controls. The ability of BACE1 to regulate SSc fibroblast activation reveals a therapeutic target in SSc. Several BACE1 inhibitors have been shown to be safe in clinical trials for Alzheimer's disease and could be repurposed to ameliorate fibrosis progression.

2.
Nucleic Acids Res ; 52(3): 1136-1155, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38038252

ABSTRACT

Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.


Subject(s)
Centromere , DNA Breaks, Double-Stranded , Molecular Chaperones , Nuclear Proteins , R-Loop Structures , X-linked Nuclear Protein , Child , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Centromere/metabolism , Chromatin , Co-Repressor Proteins/metabolism , DNA , Histones/genetics , Histones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
3.
PLoS One ; 17(9): e0272847, 2022.
Article in English | MEDLINE | ID: mdl-36048775

ABSTRACT

BACKGROUND: Rapid Diagnostic Tests (RDTs) have become the cornerstone for the management of malaria in many endemic settings, but their use is constrained for several reasons: (i) persistent malaria antigen (histidine-rich protein 2; HRP2) leading to false positive test results; (ii) hrp2 deletions leading to false negative PfHRP2 results; and (iii) limited sensitivity with a detection threshold of around 100 parasites/µl blood (pLDH- and HRP2-based) leading to false negative tests. Microscopy is still the gold standard for malaria diagnosis, and allows for species determination and quantitation, but requires trained microscopists, maintained microscopes and has detection limit issues. Consequently, there is a pressing need to develop and evaluate more sensitive and accurate diagnostic tests. To address this need we have developed a direct on blood mini PCR-NALFIA test that combines the benefits of molecular biology with low infrastructural requirements and extensive training. METHODS: This is a Phase 3 diagnostic evaluation in 5 African countries. Study sites (Sudan, Ethiopia, Burkina, Kenya and Namibia) were selected to ensure wide geographical coverage of Africa and to address various malaria epidemiological contexts ranging from high transmission to near elimination settings with different clinical scenarios and diagnostic challenges. Study participants will be enrolled at the study health facilities after obtaining written informed consent. Diagnostic accuracy will be assessed following the WHO/TDR guidelines for the evaluation of diagnostics and reported according to STARD principles. Due to the lack of a 100% specific and sensitive standard diagnostic test for malaria, the sensitivity and specificity of the new test will be compared to the available diagnostic practices in place at the selected sites and to quantitative PCR as the reference test. DISCUSSION: This phase 3 study is designed to validate the clinical performance and feasibility of implementing a new diagnostic tool for the detection of malaria in real clinical settings. If successful, the proposed technology will improve the diagnosis of malaria. Enrolment started in November 2022 (Kenya) with assessment of long term outcome to be completed by 2023 at all recruitment sites. TRIAL REGISTRATION: Pan African Clinical Trial Registry (www.pactr.org) PACTR202202766889963 on 01/02/2022 and ISCRTN (www.isrctn.com/) ISRCTN13334317 on 22/02/2022.


Subject(s)
Malaria, Falciparum , Malaria , Antigens, Protozoan/genetics , Diagnostic Tests, Routine/methods , Humans , Kenya , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562959

ABSTRACT

The ß-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) is an extensively studied therapeutic target for Alzheimer's disease (AD), owing to its role in the production of neurotoxic amyloid beta (Aß) peptides. However, despite numerous BACE1 inhibitors entering clinical trials, none have successfully improved AD pathogenesis, despite effectively lowering Aß concentrations. This can, in part, be attributed to an incomplete understanding of BACE1, including its physiological functions and substrate specificity. We propose that BACE1 has additional important physiological functions, mediated through substrates still to be identified. Thus, to address this, we computationally analysed a list of 533 BACE1 dependent proteins, identified from the literature, for potential BACE1 substrates, and compared them against proteins differentially expressed in AD. We identified 15 novel BACE1 substrates that were specifically altered in AD. To confirm our analysis, we validated Protein tyrosine phosphatase receptor type D (PTPRD) and Netrin receptor DCC (DCC) using Western blotting. These findings shed light on the BACE1 inhibitor failings and could enable the design of substrate-specific inhibitors to target alternative BACE1 substrates. Furthermore, it gives us a greater understanding of the roles of BACE1 and its dysfunction in AD.


Subject(s)
Alzheimer Disease , DCC Receptor , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Computational Biology , DCC Receptor/genetics , DCC Receptor/metabolism , Data Mining , Humans , Phosphoric Monoester Hydrolases , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
5.
Obes Rev ; 23(7): e13430, 2022 07.
Article in English | MEDLINE | ID: mdl-35119166

ABSTRACT

ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the ß-secretase responsible for the production of ß-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic ß-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Diabetes Mellitus, Type 2 , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Diabetes Mellitus, Type 2/genetics , Humans , Mice , Obesity/genetics
6.
Methods Mol Biol ; 2441: 321-327, 2022.
Article in English | MEDLINE | ID: mdl-35099748

ABSTRACT

The fibrin gel angiogenesis bead assay provides a controlled in vitro setting for observing endothelial angiogenic sprouting in response to modified variables. Endothelial cells are coated onto microcarriers and embedded into a fibrin clot containing necessary growth factors. Following a 24-h incubation, endothelial sprouts are imaged using a light microscope. This method is useful for rapidly and affordably investigating the effects of genetic or chemical manipulation to endothelial function.


Subject(s)
Endothelial Cells , Fibrin , Biological Assay , Neovascularization, Physiologic/physiology
7.
Redox Biol ; 47: 102158, 2021 11.
Article in English | MEDLINE | ID: mdl-34626892

ABSTRACT

The transcription factor Nrf2 is a stress-responsive master regulator of antioxidant, detoxification and proteostasis genes. In astrocytes, Nrf2-dependent gene expression drives cell-autonomous cytoprotection and also non-cell-autonomous protection of nearby neurons, and can ameliorate pathology in several acute and chronic neurological disorders associated with oxidative stress. However, the value of astrocytic Nrf2 as a therapeutic target depends in part on whether Nrf2 activation by disease-associated oxidative stress occludes the effect of any Nrf2-activating drug. Nrf2 activation classically involves the inhibition of interactions between Nrf2's Neh2 domain and Keap1, which directs Nrf2 degradation. Keap1 inhibition is mediated by the modification of cysteine residues on Keap1, and can be triggered by electrophilic small molecules such as tBHQ. Here we show that astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling. Keap1 deficiency elevates basal Nrf2 target gene expression in astrocytes and occludes the effects of tBHQ, oxidative stress still induced strong Nrf2-dependent gene expression in Keap1-deficient astrocytes. Moreover, while tBHQ prevented protein degradation mediated via Nrf2's Neh2 domain, oxidative stress did not, consistent with a Keap1-independent mechanism. Moreover the effects of oxidative stress and tBHQ on Nrf2 target gene expression are additive, not occlusive. Mechanistically, oxidative stress enhances the transactivation potential of Nrf2's Neh5 domain in a manner dependent on its Cys-191 residue. Thus, astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling, meaning that further Nrf2 activation by Keap1-inhibiting drugs may be a viable therapeutic strategy.


Subject(s)
Astrocytes , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Antioxidants , Astrocytes/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , NF-E2-Related Factor 2/genetics , Oxidative Stress
8.
J Clin Invest ; 130(8): 4104-4117, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32407295

ABSTRACT

Diabetes, obesity, and Alzheimer's disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased ß-site amyloid precursor protein-cleaving (APP-cleaving) enzyme 1 (BACE1), APP, and ß-amyloid (Aß) are linked with vascular disease development and increased BACE1 and Aß accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, increased Aß, and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice increased plasma and vascular Aß42 that correlated with decreased NO bioavailability, endothelial dysfunction, and increased blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aß42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aß42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation, and raised blood pressure. In humans, increased plasma Aß42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aß42 reduced endothelial NO synthase (eNOS), cyclic GMP (cGMP), and protein kinase G (PKG) activity independently of diet, whereas endothelin-1 was increased by diet and Aß42. Lowering Aß42 reversed the DIO deficit in the eNOS/cGMP/PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.


Subject(s)
Amyloid beta-Peptides/blood , Diabetes Mellitus/blood , Diabetic Angiopathies/blood , Obesity/blood , Peptide Fragments/blood , Signal Transduction , Amyloid beta-Peptides/genetics , Animals , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Nitric Oxide/blood , Nitric Oxide/genetics , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Obesity/genetics , Obesity/pathology , Peptide Fragments/genetics
9.
Proc Natl Acad Sci U S A ; 116(33): 16234-16239, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31371500

ABSTRACT

Understanding the approach to faulting in continental rocks is critical for identifying processes leading to fracturing in geomaterials and the preparation process of large earthquakes. In situ dynamic X-ray imaging and digital volume correlation analysis of a crystalline rock core, under a constant confining pressure of 25 MPa, are used to elucidate the initiation, growth, and coalescence of microfractures leading to macroscopic failure as the axial compressive stress is increased. Following an initial elastic deformation, microfractures develop in the solid, and with increasing differential stress, the damage pervades the rock volume. The creation of new microfractures is accompanied by propagation, opening, and closing of existing microfractures, leading to the emergence of damage indices that increase as powers of the differential stress when approaching failure. A strong spatial correlation is observed between microscale zones with large positive and negative volumetric strains, microscale zones with shears of opposite senses, and microscale zones with high volumetric and shear strains. These correlations are attributed to microfracture interactions mediated by the heterogeneous stress field. The rock fails macroscopically as the microfractures coalesce and form a geometrically complex 3D volume that spans the rock sample. At the onset of failure, more than 70% of the damage volume is connected in a large fracture cluster that evolves into a fault zone. In the context of crustal faulting dynamics, these results suggest that evolving rock damage around existing locked or future main faults influences the localization process that culminates in large brittle rupture events.

11.
Clin Sci (Lond) ; 132(8): 851-868, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712883

ABSTRACT

Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.


Subject(s)
Cerebral Small Vessel Diseases/etiology , Translational Research, Biomedical , Animals , Humans
12.
Nat Commun ; 9(1): 1306, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29610518

ABSTRACT

Insulin receptor (IR) plays a key role in the control of glucose homeostasis; however, the regulation of its cellular expression remains poorly understood. Here we show that the amount of biologically active IR is regulated by the cleavage of its ectodomain, by the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), in a glucose concentration-dependent manner. In vivo studies demonstrate that BACE1 regulates the amount of IR and insulin signaling in the liver. During diabetes, BACE1-dependent cleavage of IR is increased and the amount of IR in the liver is reduced, whereas infusion of a BACE1 inhibitor partially restores liver IR. We suggest the potential use of BACE1 inhibitors to enhance insulin signaling during diabetes. Additionally, we show that plasma levels of cleaved IR reflect IR isoform A expression levels in liver tumors, which prompts us to propose that the measurement of circulating cleaved IR may assist hepatic cancer detection and management.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Antigens, CD/metabolism , Aspartic Acid Endopeptidases/metabolism , Liver/metabolism , Receptor, Insulin/metabolism , Animals , Diabetes Mellitus/metabolism , Female , Glucose/chemistry , Glycosylation , HEK293 Cells , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/metabolism , Protein Domains , Signal Transduction
13.
Metabolism ; 85: 59-75, 2018 08.
Article in English | MEDLINE | ID: mdl-29526536

ABSTRACT

OBJECTIVE: ß-secretase/ß-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPß (sAPPß), contribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells. MATERIALS/METHODS: Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1-/-mice and mice treated with sAPPß and adipose tissue and plasma from obese and type 2 diabetic patients. RESULTS: We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-Activated Receptor γ Co-activator 1α (PGC-1α) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1α down-regulation, and fatty acid oxidation were mimicked by soluble APPß in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1α mRNA levels and by an increase in sAPPß plasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPPß administration to mice reduced PGC-1α levels and increased inflammation in skeletal muscle and decreased insulin sensitivity. CONCLUSIONS: Collectively, these findings indicate that the BACE1 product sAPPß is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Endoplasmic Reticulum Stress/physiology , Inflammation/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/physiology , Animals , Cell Line , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Humans , Insulin Resistance/physiology , Male , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , NF-kappa B/metabolism , Palmitic Acid/pharmacology , Signal Transduction/drug effects
14.
Nature ; 556(7699): 113-117, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29590092

ABSTRACT

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Subject(s)
Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Succinates/metabolism , Alkylation , Animals , Carboxy-Lyases , Cattle , Cysteine/chemistry , Cysteine/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Feedback, Physiological , Female , HEK293 Cells , Humans , Hydro-Lyases/biosynthesis , Interferon-beta/immunology , Interferon-beta/pharmacology , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Proteins/metabolism , Rats , Rats, Wistar , Succinates/chemistry
15.
Sci Rep ; 8(1): 55, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311632

ABSTRACT

Obesity places an enormous medical and economic burden on society. The principal driver appears to be central leptin resistance with hyperleptinemia. Accordingly, a compound that reverses or prevents leptin resistance should promote weight normalisation and improve glucose homeostasis. The protease Bace1 drives beta amyloid (Aß) production with obesity elevating hypothalamic Bace1 activity and Aß1-42 production. Pharmacological inhibition of Bace1 reduces body weight, improves glucose homeostasis and lowers plasma leptin in diet-induced obese (DIO) mice. These actions are not apparent in ob/ob or db/db mice, indicating the requirement for functional leptin signalling. Decreasing Bace1 activity normalises hypothalamic inflammation, lowers PTP1B and SOCS3 and restores hypothalamic leptin sensitivity and pSTAT3 response in obese mice, but does not affect leptin sensitivity in lean mice. Raising central Aß1-42 levels in the early stage of DIO increases hypothalamic basal pSTAT3 and reduces the amplitude of the leptin pSTAT3 signal without increased inflammation. Thus, elevated Aß1-42 promotes hypothalamic leptin resistance, which is associated with diminished whole-body sensitivity to exogenous leptin and exacerbated body weight gain in high fat fed mice. These results indicate that Bace1 inhibitors, currently in clinical trials for Alzheimer's disease, may be useful agents for the treatment of obesity and associated diabetes.


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Amyloid beta-Peptides/metabolism , Animals , Body Weight , Diet, High-Fat , Gene Expression , Glucose/metabolism , Homeostasis , Mice , Mice, Knockout , Mice, Obese , Neuropeptides/genetics , Neuropeptides/metabolism , Pyramidal Cells/metabolism , Signal Transduction
16.
BMC Vet Res ; 13(1): 131, 2017 May 12.
Article in English | MEDLINE | ID: mdl-28499434

ABSTRACT

BACKGROUND: The European badger is an important wildlife reservoir of Mycobacterium bovis implicated in the spread of bovine tuberculosis in the United Kingdom and Ireland. Infected badgers are known to shed M. bovis in their urine and faeces, which may contaminate the environment. To aid bovine tuberculosis control efforts novel diagnostic tests for detecting infected and shedding badgers are needed. We proposed development of a novel, rapid immunochromatographic lateral flow device (LFD) as a non-invasive test to detect M. bovis cells in badger faeces. Its application in combination with immunomagnetic separation (IMS) to detect Mycobacterium bovis cells in badger faeces is reported here. RESULTS: A novel prototype LFD for M. bovis cells was successfully developed, with unique specificity for M. bovis and a limit of detection 50% (LOD50%) of 1.7 × 104 M. bovis cells/ml. When IMS was employed to selectively capture and concentrate M. bovis cells from badger faeces prior to LFD testing, the LOD50% of the IMS-LFD assay was 2.8 × 105 M. bovis cells/ml faecal homogenate. Faeces samples collected from latrines at badger setts in a region of endemic bovine tuberculosis infection were tested; 78 (18%) of 441 samples tested IMS-LFD assay positive, whereas 140 (32%) tested IMS-qPCR positive (Kappa agreement -0.009 ± 0.044, p = 0.838). Subsequently, when 130 faeces samples from live captured, or captive, badgers of known infection status (on the basis of StatPak, interferon-γ and/or culture results) were tested, the IMS-LFD assay had higher relative diagnostic specificity (Sp 0.926), but poorer relative diagnostic sensitivity (Se 0.081), than IMS-qPCR (Sp 0.706, Se 0.581) and IMS-culture (Sp 0.794, Se 0.436). CONCLUSIONS: The novel IMS-LFD assay, although very specific for M. bovis, has low analytical sensitivity (indicated by the LOD50%) and would only detect badgers shedding high numbers of M. bovis (>104-5 cells/g) in their faeces. The novel LFD would, therefore, have limited value as a non-invasive test for badger TB surveillance purposes but it may have value for alternative veterinary diagnostic applications.


Subject(s)
Chromatography, Affinity/veterinary , Feces/microbiology , Immunomagnetic Separation/veterinary , Mustelidae/microbiology , Mycobacterium bovis/isolation & purification , Animals , Antibodies, Bacterial/analysis , Immunomagnetic Separation/methods , Sensitivity and Specificity
17.
Sci Rep ; 6: 31159, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27498693

ABSTRACT

Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.


Subject(s)
Cytokines/metabolism , Dimethyl Fumarate/pharmacology , MAP Kinase Signaling System/drug effects , Polyubiquitin/metabolism , Toll-Like Receptors/metabolism , Animals , Cytokines/genetics , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Polyubiquitin/genetics , RAW 264.7 Cells , Toll-Like Receptors/genetics
18.
PLoS One ; 10(9): e0138872, 2015.
Article in English | MEDLINE | ID: mdl-26405763

ABSTRACT

Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.


Subject(s)
CD18 Antigens/genetics , CD18 Antigens/metabolism , Insulin Resistance , Neutrophil Infiltration , Obesity/immunology , Adipose Tissue, White/immunology , Animals , Binding Sites , CD18 Antigens/chemistry , Diet, High-Fat , Liver/immunology , Macrophages/metabolism , Mice , Mutation , Obesity/genetics , Obesity/metabolism , T-Lymphocytes/metabolism
19.
Nat Commun ; 6: 7066, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25967870

ABSTRACT

Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.


Subject(s)
Antioxidants/metabolism , Cerebral Cortex/cytology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , NF-E2-Related Factor 2/metabolism , Neurons/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cerebral Cortex/embryology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Electrophysiological Phenomena , Kelch-Like ECH-Associated Protein 1 , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics
20.
J Autoimmun ; 60: 59-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25975491

ABSTRACT

Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1ß was the most down-regulated gene. Consistent with this, IL-1ß was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1ß by macrophages derived from the bone marrow of NRF2(-/-) mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Helminth Proteins/pharmacology , Interleukin-1beta/biosynthesis , NF-E2-Related Factor 2/genetics , Acanthocheilonema/metabolism , Animals , Arthritis, Experimental/prevention & control , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/prevention & control , Collagen , Gerbillinae , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Joints/immunology , Joints/pathology , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...