Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Int J Hyperthermia ; 40(1): 2255755, 2023.
Article in English | MEDLINE | ID: mdl-37710404

ABSTRACT

PURPOSE: To develop a computational model of microwave ablation (MWA) with a thermal accelerant gel and apply the model toward interpreting experimental observations in ex vivo bovine and in vivo porcine liver. METHODS: A 3D coupled electromagnetic-heat transfer model was implemented to characterize thermal profiles within ex vivo bovine and in vivo porcine liver tissue during MWA with the HeatSYNC thermal accelerant. Measured temperature dependent dielectric and thermal properties of the HeatSYNC gel were applied within the model. Simulated extents of MWA zones and transient temperature profiles were compared against experimental measurements in ex vivo bovine liver. Model predictions of thermal profiles under in vivo conditions in porcine liver were used to analyze thermal ablations observed in prior experiments in porcine liver in vivo. RESULTS: Measured electrical conductivity of the HeatSYNC gel was ∼83% higher compared to liver at room temperature, with positive linear temperature dependency, indicating increased microwave absorption within HeatSYNC gel compared to tissue. In ex vivo bovine liver, model predicted ablation zone extents of (31.5 × 36) mm with the HeatSYNC, compared to (32.9 ± 2.6 × 40.2 ± 2.3) mm in experiments (volume differences 4 ± 4.1 cm3). Computational models under in vivo conditions in porcine liver suggest approximating the HeatSYNC gel spreading within liver tissue during ablations as a plausible explanation for larger ablation zones observed in prior in vivo studies. CONCLUSION: Computational models of MWA with thermal accelerants provide insight into the impact of accelerant on MWA, and with further development, could predict ablations with a variety of gel injection sites.


Subject(s)
Liver , Microwaves , Animals , Cattle , Swine , Microwaves/therapeutic use , Liver/surgery , Computer Simulation , Electric Conductivity , Hot Temperature
2.
Med Phys ; 49(12): 7638-7647, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35964298

ABSTRACT

PURPOSE: We have developed a fully 3D data acquisition system for microwave breast imaging which can operate simultaneously inside a magnetic resonance imaging (MRI). MRI is used regularly for breast imaging to distinguish tumors from normal tissue. It generally has poor specificity unless used with a gadolinium contrast agent. Microwave imaging could fill this need because of the good endogenous tumor:normal tissue property contrast, especially in light of safety concerns for gadolinium. The antenna array consists of 16 monopole antennas positioned in a horizontal circle surrounding the breast which can then be moved vertically for 3D coverage of the breast. The tank system materials were chosen to minimize artifacts in the MR image within the specific shared imaging zone. The support rods are stainless steel, albeit positioned sufficiently far from the imaging target to have little effect. The mechanical motion parts are all 3D printed plastic. Unlike many conventional antennas, the monopoles consist of just the center conductor and insulator of the coaxial cable, making it one of the least possible metallic structures. METHODS: Data were acquired both inside and outside of the MR bore to confirm that the MR bore did not have adverse effects on the microwave imaging process. The imaging tank was filled with a mixture of glycerin and water to both provide a reasonable property match to the phantom and to highly attenuate the fields which also acted to suppress multi-path signals. Microwave images were reconstructed using our Gauss-Newton scheme combined with a log transformation for a more linear convergence. MR images were also acquired to assess the effects of the microwave tank structures on the imaging. RESULTS: The microwave measurement data were acquired in log magnitude and phase format at 200 MHz increments from 700-1900 MHz. Each antenna acted sequentially as a transmitter while the complement of 15 acted as a receiver. The single frequency images were reconstructed using a Gauss-Newton iterative technique with a standard log transformation to linearize the process. The data showed that the signal strengths were between 7-10 dB lower for the case when the array was inside the MRI versus when not. Notwithstanding, the image quality was still high because of the significant signal to noise ratio. The reconstructed images in both situations demonstrated good 3D object recovery of the vertically size and shaped varying object. The MR images were not adversely affected by the presence of antennas or feed structures. CONCLUSIONS: We have demonstrated that our technique can recover high-quality images of a 3D varying object within an MRI system. Compatibility issues have been addressed for both the microwave and MRI systems. The reduced SNR for the case operating in the MRI did not adversely affect the images. To the best of our knowledge, this is the first example of a microwave imaging system operating in an MRI with full 3D volumetric capability.


Subject(s)
Microwave Imaging , Microwaves , Gadolinium , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Imaging, Three-Dimensional/methods
3.
IEEE Trans Microw Theory Tech ; 69(5): 2741-2752, 2021 May.
Article in English | MEDLINE | ID: mdl-34176958

ABSTRACT

This paper describes a fast microwave tomography reconstruction algorithm based on the two-dimensional discrete dipole approximation. Synthetic data from a finite-element based solver and experimental data from a microwave imaging system are used to reconstruct images and to validate the algorithm. The microwave measurement system consists of 16 monopole antennas immersed in a tank filled with lossy coupling liquid and a vector network analyzer. The low-profile antennas and lossy nature of system make the discrete dipole approximation an ideal forward solver in the image reconstructions. The results show that the algorithm can readily reconstruct a 2D plane of a cylindrical phantom. The proposed forward solver combined with the nodal adjoint method for computing the Jacobian matrix enables the algorithm to reconstruct an image within 6 seconds. This implementation provides a significant time savings and reduced memory requirements and is a dramatic improvement over previous implementations.

4.
IEEE Trans Antennas Propag ; 68(1): 615-616, 2020 Jan.
Article in English | MEDLINE | ID: mdl-33281207

ABSTRACT

In the paper, "Investigation of histology region in dielectric measurements of heterogeneous tissues," by Porter and O'Halloran, the authors utilize a flexible phantom in a layered material dielectric property analysis to quantify the effective sensing volume of a coaxial dielectric probe. Ostensibly, this test has been used by others to characterize the region for which percent variation in the material composition in front of the probe corresponds to percent variation in the computed effective dielectric properties. By employing a compressible material, the authors fail to isolate features that are attributable solely to the probe, itself, and inadvertently incorporate confounding characteristics associated with the compressible nature of the material. The net effect is to exaggerate the probe's sensing volume which undermines conclusions drawn from the subsequent tissue dielectric property studies.

5.
Article in English | MEDLINE | ID: mdl-31131336

ABSTRACT

The two-dimensional electric field distribution of the microwave imaging system is numerically simulated for a simplified breast tumour model. The proposed two-dimensional discrete dipole approximation (DDA) has the potential to improve computational speed compared to other numerical methods while retaining comparable accuracy. We have modeled the field distributions in COMSOL Multiphysics as baseline results to benchmark the DDA simulations. We have also investigated the adequate sampling size and the effect of inclusion size and property contrast on solution accuracy. In this way, we can utilize the 2D DDA as an alternative, fast and reliable forward solver for microwave tomography. From a mathematical perspective, the derivation of the 2D DDA and its application to microwave imaging is new and not previously implemented. The simulation results and the measurements show that the 2D DDA is a well-grounded forward solver for the specified microwave breast imaging system.

6.
IEEE Trans Biomed Eng ; 66(9): 2566-2575, 2019 09.
Article in English | MEDLINE | ID: mdl-30629488

ABSTRACT

OBJECTIVE: Fusion of magnetic resonance imaging (MRI) breast images with microwave tomography is accomplished through a soft prior technique, which incorporates spatial information (from MRI), i.e., accurate boundary location of different regions of interest, into the regularization process of the microwave image reconstruction algorithm. METHODS: Numerical experiments were completed on a set of three-dimensional (3-D) breast geometries derived from MR breast data with different parenchymal densities, as well as a simulated tumor to evaluate the performance over a range of breast shapes, sizes, and property distributions. RESULTS: When the soft prior regularization technique was applied, both permittivity and conductivity relative root mean square error values decreased by more than 87% across all breast densities, except in two cases where the error decrease was only 55% and 78%. In addition, the incorporation of structural priors increased contrast between tumor and fibroglandular tissue by 59% in permittivity and 192% in conductivity. CONCLUSION: This study confirmed that the soft prior algorithm is robust in 3-D and can function successfully across a range of complex geometries and tissue property distributions. SIGNIFICANCE: This study demonstrates that our microwave tomography is capable of recovering accurate tissue property distributions when spatial information from MRI is incorporated through soft prior regularization.


Subject(s)
Breast/diagnostic imaging , Imaging, Three-Dimensional/methods , Microwave Imaging , Phantoms, Imaging , Tomography/methods , Breast Neoplasms/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional/instrumentation , Models, Biological , Multimodal Imaging , Tomography/instrumentation
7.
Diagnostics (Basel) ; 8(3)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200391

ABSTRACT

A breast phantom developed at the Supelec Institute was interrogated to study its suitability for microwave tomography measurements. A microwave measurement system based on 16 monopole antennas and a vector network analyzer was used to study how the S-parameters are influenced by insertion of the phantom. The phantom is a 3D-printed structure consisting of plastic shells that can be filled with tissue mimicking liquids. The phantom was filled with different liquids and tested with the measurement system to determine whether the plastic has any effects on the recovered images or not. Measurements of the phantom when it is filled with the same liquid as the surrounding coupling medium are of particular interest. In this case, the phantom plastic has a substantial effects on the measurements which ultimately detracts from the desired images.

8.
Article in English | MEDLINE | ID: mdl-30215027

ABSTRACT

Microwave imaging is a low-cost imaging method that has shown promise for breast imaging and, in particular, neoadjuvant chemotherapy monitoring. The early studies of microwave imaging in the therapy monitoring setting are encouraging. For the neoadjuvant therapy application, it would be desirable to achieve the most accurate possible characterization of the tissue properties. One method to achieve increased resolution and specificity in microwave imaging reconstruction is the use of a soft prior regularization. The objective of this study is to develop a method to use magnetic resonance (MR) images, taken in a different imaging configuration, as this soft prior. To enable the use of the MR images as a soft prior, it is necessary to register the MR images to the microwave imaging space. Registration fiducials were placed around the breast that are visible in both the MRI and with an optical scanner integrated into the microwave system. Utilizing these common registration locations, numerical algorithms have been developed to warp the original breast MR images into a geometry closely resembling that in which the breast is pendant in the microwave system.

9.
Article in English | MEDLINE | ID: mdl-30828701

ABSTRACT

In developing a microwave tomography system, we started by examining the fundamental signal measurement challenges-i.e., how to interrogate the target while suppressing unwanted multi-path signals. Beginning with a lossy coupling bath to suppress unwanted surface waves, we have developed a robust and reliable system that is both simple and low profile. However, beyond the basic measurement configuration, the lossy coupling medium concept has also informed our choice of array antenna and imaging algorithms. The synergism of these concepts has produced a novel concept which is embodied in a system that has been successfully translated to the clinic.

10.
IEEE Trans Microw Theory Tech ; 65(5): 1471-1478, 2017 May.
Article in English | MEDLINE | ID: mdl-28507391

ABSTRACT

We examine the broadband behavior of complex electrical properties of glycerin and water mixtures over the frequency range of 0.1 - 25.0 GHz, especially as they relate to using these liquids as coupling media for microwave tomographic imaging. Their combination is unique in that they are mutually miscible over the full range of concentrations which allows them to be tailored to dielectric property matching for biological tissues. While the resultant mixture properties are partially driven by differences in the inherent low frequency permittivity of each constituent, relaxation frequency shifts play a disproportionately larger role in increasing the permittivity dispersion while also dramatically increasing the effective conductivity over the frequency range of 1 to 3 GHz. For the full range of mixture ratios, the relaxation frequency shifts from 17.5 GHz for 0% glycerin to less than 0.1 GHz for 100% glycerin. Of particular interest is the fact that the conductivity stays above 1.0 S/m over the 1-3 GHz range for glycerin mixture ratios (70-90% glycerin) we use for microwave breast tomography. The high level of attenuation is critical for suppressing unwanted multipath signals. This paper presents a full characterization of these liquids along with a discussion of their benefits and limitations in the context of microwave tomography.

11.
Med Phys ; 44(8): 4239-4251, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28556256

ABSTRACT

PURPOSE: The authors have developed a new two-step microwave tomographic image reconstruction process specifically designed to incorporate logarithmic transformed microwave imaging algorithms as a means of significantly improving spatial resolution and target property recovery. Log transform eliminates the need for a priori information, but spatial filtering often integrated as part of the regularization required to stabilize image recovery, generally smooths image features and reduces object definition. The new implementation begins with this smoothed image as the first step, but then utilizes it as the starting estimate for a second step which continues the iterative process with a standard weighted Euclidean distance regularization. The penalty term of the latter restricts the new image to a multi-dimensional location close to the original but allows the algorithm to optimize the image without excessive smoothing. METHODS: The overall approach is based on a Gauss-Newton iterative scheme which incorporates a log transformation as a way of making the reconstruction more linear. It has been shown to be robust and not require a priori information as a condition for convergence, but does produce somewhat smoothed images as a result of associated regularization. The new two-step process utilizes the previous technique to generate a smoothed initial estimate and then uses the same reconstruction process with a weighted Euclidean distance penalty term. A simple and repeatable method has been implemented to determine the weighting factor without significant computational burden. The reconstructions are assessed according to conventional parameter estimation metrics. RESULTS: We apply the approach to phantom experiments using large, high contrast canonical shapes followed by a set of images recovered from an actual patient exam. The image improvements are substantial in regards to improved property recovery and feature delineation without inducing unwanted artifacts. Analysis of the residual vector after the reconstruction process further emphasizes that the minimization criterion is efficient with minimal biases. CONCLUSIONS: The outcome is a novel synergism of an established stable reconstruction algorithm with a conventional regularization technique. It maintains the ability to recover high quality microwave tomographic images without the bias of a priori information while substantially improving image quality. The results are confirmed on both phantom experiments and patient exams.


Subject(s)
Breast/diagnostic imaging , Microwaves , Algorithms , Female , Humans , Phantoms, Imaging , Tomography
12.
Article in English | MEDLINE | ID: mdl-28191324

ABSTRACT

The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues.

13.
Radiat Prot Dosimetry ; 172(1-3): 87-95, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27421470

ABSTRACT

Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario.


Subject(s)
Biological Assay/instrumentation , Radiometry/instrumentation , Tooth/chemistry , Tooth/radiation effects , Transducers , Wireless Technology/instrumentation , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Humans , Magnetics/instrumentation , Miniaturization , Reproducibility of Results , Sensitivity and Specificity
14.
IEEE Trans Microw Theory Tech ; 64(3): 915-923, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27346890

ABSTRACT

We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies.

15.
Med Phys ; 43(4): 1933, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27036589

ABSTRACT

PURPOSE: The authors have developed a new 3D breast image reconstruction technique that utilizes the soft tissue spatial resolution of magnetic resonance imaging (MRI) and integrates the dielectric property differentiation from microwave imaging to produce a dual modality approach with the goal of augmenting the specificity of MR imaging, possibly without the need for nonspecific contrast agents. The integration is performed through the application of a soft prior regularization which imports segmented geometric meshes generated from MR exams and uses it to constrain the microwave tomography algorithm to recover nearly uniform property distributions within segmented regions with sharp delineation between these internal subzones. METHODS: Previous investigations have demonstrated that this approach is effective in 2D simulation and phantom experiments and also in clinical exams. The current study extends the algorithm to 3D and provides a thorough analysis of the sensitivity and robustness to misalignment errors in size and location between the spatial prior information and the actual data. RESULTS: Image results in 3D were not strongly dependent on reconstruction mesh density, and the changes of less than 30% in recovered property values arose from variations of more than 125% in target region size-an outcome which was more robust than in 2D. Similarly, changes of less than 13% occurred in the 3D image results from variations in target location of nearly 90% of the inclusion size. Permittivity and conductivity errors were about 5 times and 2 times smaller, respectively, with the 3D spatial prior algorithm in actual phantom experiments than those which occurred without priors. CONCLUSIONS: The presented study confirms that the incorporation of structural information in the form of a soft constraint can considerably improve the accuracy of the property estimates in predefined regions of interest. These findings are encouraging and establish a strong foundation for using the soft prior technique in clinical studies, where their microwave imaging system and MRI can simultaneously collect breast exam data in patients.


Subject(s)
Breast/anatomy & histology , Breast/diagnostic imaging , Imaging, Three-Dimensional/methods , Microwaves , Tomography/methods , Algorithms , Magnetic Resonance Imaging , Phantoms, Imaging
16.
Adv Biomed Eng Res ; 3: 8-17, 2015.
Article in English | MEDLINE | ID: mdl-27182531

ABSTRACT

For purposes of biodosimetry in the event of a large scale radiation disaster, one major and very promising point-of contact device is assessing dose using tooth enamel. This technique utilizes the capabilities of electron paramagnetic resonance to measure free radicals and other unpaired electron species, and the fact that the deposition of energy from ionizing radiation produces free radicals in most materials. An important stipulation for this strategy is that the measurements, need to be performed on a central incisor that is basically intact, i.e. which has an area of enamel surface that is as large as the probing tip of the resonator that is without decay or restorative care that replaces the enamel. Therefore, an important consideration is how to quickly assess whether the tooth has sufficient enamel to be measured for dose and whether there is resin present on the tooth being measured and to be able to characterize the amount of surface that is impacted. While there is a relatively small commercially available dielectric probe which could be used in this context, it has several disadvantages for the intended use. Therefore, a smaller, 1.19mm diameter 50 ohm, open-ended, coaxial dielectric probe has been developed as an alternative. The performance of the custom probe was validated against measurement results of known standards. Measurements were taken of multiple teeth enamel and dental resin samples using both probes. While the probe contact with the teeth samples was imperfect and added to measurement variability, the inherent dielectric contrast between the enamel and resin was sufficient that the probe measurements could be used as a robust means of distinguishing the two material types. The smaller diameter probe produced markedly more definitive results in terms of distinguishing the two materials.

17.
BMC Med Phys ; 14: 3, 2014.
Article in English | MEDLINE | ID: mdl-25002909

ABSTRACT

BACKGROUND: Tissue dielectric properties are specific to physiological changes and consequently have been pursued as imaging biomarkers of cancer and other pathological disorders. However, a recent study (Phys Med Biol 52:2637-2656, 2007; Phys Med Biol 52:6093-6115, 2007), which utilized open-ended dielectric probing techniques and a previously established sensing volume, reported that the dielectric property contrast may only be 10% or less between breast cancer and normal fibroglandular tissue whereas earlier data suggested ratios of 4:1 and higher may exist. Questions about the sensing volume of this probe relative to the amount of tissue interrogated raise the distinct possibility that the conclusions drawn from that study may have been over interpreted. METHODS: We performed open-ended dielectric probe measurements in two-layer compositions consisting of a background liquid and a planar piece of Teflon that was translated to predetermined distances away from the probe tip to assess the degree to which the probe produced property estimates representative of the compositional averages of the dielectric properties of the two materials resident within a small sensing volume around the tip of the probe. RESULTS: When Teflon was in contact with the probe, the measured properties were essentially those of pure Teflon whereas the properties were nearly identical to those of the intervening liquid when the Teflon was located more than 2 mm from the probe tip. However, when the Teflon was moved closer to the probe tip, the dielectric property measurements were not linearly related to the compositional fraction of the two materials, but reflected nearly 50% of those of the intervening liquid at separation distances as small as 0.2 mm, and approximately 90% of the liquid when the Teflon was located 0.5 mm from the probe tip. CONCLUSION: These results suggest that the measurement methods reported in the most recent breast tissue dielectric property study are not likely to return the compositional averages of the breast tissue specimens evaluated, and thus, the conclusions reached about the expected dielectric property contrast in breast cancer from this specimen study may not be correct.

18.
Med Phys ; 40(10): 103101, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24089930

ABSTRACT

PURPOSE: Breast magnetic resonance imaging is highly sensitive but not very specific for the detection of breast cancer. Opportunities exist to supplement the image acquisition with a more specific modality provided the technical challenges of meeting space limitations inside the bore, restricted breast access, and electromagnetic compatibility requirements can be overcome. Magnetic resonance (MR) and microwave tomography (MT) are complementary and synergistic because the high resolution of MR is used to encode spatial priors on breast geometry and internal parenchymal features that have distinct electrical properties (i.e., fat vs fibroglandular tissue) for microwave tomography. METHODS: The authors have overcome integration challenges associated with combining MT with MR to produce a new coregistered, multimodality breast imaging platform--magnetic resonance microwave tomography, including: substantial illumination tank size reduction specific to the confined MR bore diameter, minimization of metal content and composition, reduction of metal artifacts in the MR images, and suppression of unwanted MT multipath signals. RESULTS: MR SNR exceeding 40 dB can be obtained. Proper filtering of MR signals reduces MT data degradation allowing MT SNR of 20 dB to be obtained, which is sufficient for image reconstruction. When MR spatial priors are incorporated into the recovery of MT property estimates, the errors between the recovered versus actual dielectric properties approach 5%. CONCLUSIONS: The phantom and human subject exams presented here are the first demonstration of combining MT with MR to improve the accuracy of the reconstructed MT images.


Subject(s)
Breast , Magnetic Resonance Imaging/methods , Microwaves , Systems Integration , Tomography/methods , Adult , Artifacts , Female , Humans , Phantoms, Imaging
20.
Breast Cancer Res ; 15(2): R35, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23621959

ABSTRACT

INTRODUCTION: Microwave tomography recovers images of tissue dielectric properties, which appear to be specific for breast cancer, with low-cost technology that does not present an exposure risk, suggesting the modality may be a good candidate for monitoring neoadjuvant chemotherapy. METHODS: Eight patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer were imaged longitudinally five to eight times during the course of treatment. At the start of therapy, regions of interest (ROIs) were identified from contrast-enhanced magnetic resonance imaging studies. During subsequent microwave examinations, subjects were positioned with their breasts pendant in a coupling fluid and surrounded by an immersed antenna array. Microwave property values were extracted from the ROIs through an automated procedure and statistical analyses were performed to assess short term (30 days) and longer term (four to six months) dielectric property changes. RESULTS: Two patient cases (one complete and one partial response) are presented in detail and demonstrate changes in microwave properties commensurate with the degree of treatment response observed pathologically. Normalized mean conductivity in ROIs from patients with complete pathological responses was significantly different from that of partial responders (P value = 0.004). In addition, the normalized conductivity measure also correlated well with complete pathological response at 30 days (P value = 0.002). CONCLUSIONS: These preliminary findings suggest that both early and late conductivity property changes correlate well with overall treatment response to neoadjuvant therapy in locally advanced breast cancer. This result is consistent with earlier clinical outcomes that lesion conductivity is specific to differentiating breast cancer from benign lesions and normal tissue.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/secondary , Carcinoma, Lobular/secondary , Microwaves , Neoadjuvant Therapy , Breast Neoplasms/drug therapy , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Lobular/drug therapy , Chemotherapy, Adjuvant , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Neoplasm Invasiveness , Neoplasm Staging , Pilot Projects , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...