Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(19): 7387-7396, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29572350

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF or CSF3) and its receptor CSF3R regulate granulopoiesis, neutrophil function, and hematopoietic stem cell mobilization. Recent studies have uncovered an oncogenic role of mutations in the CSF3R gene in many hematologic malignancies. To find additional CSF3R mutations that give rise to cell transformation, we performed a cellular transformation assay in which murine interleukin 3 (IL-3)-dependent Ba/F3 cells were transduced with WT CSF3R plasmid and screened for spontaneous growth in the absence of IL-3. Any outgrowth clones were sequenced to identify CSF3R mutations with transformation capacity. We identified several novel mutations and determined that they transform cells via four distinct mechanisms: 1) cysteine- and disulfide bond-mediated dimerization (S581C); 2) polar, noncharged amino acid substitution at the transmembrane helix dimer interface at residue Thr-640; 3) increased internalization by a Glu-524 substitution that mimics a low G-CSF dose; and 4) hydrophobic amino acid substitutions in the membrane-proximal residues Thr-612, Thr-615, and Thr-618. Furthermore, the change in signaling activation was related to an altered CSF3R localization. We also found that CSF3R-induced STAT3 and ERK activations require CSF3R internalization, whereas STAT5 activation occurred at the cell surface. Cumulatively, we have expanded the regions of the CSF3R extracellular and transmembrane domains in which missense mutations exhibit leukemogenic capacity and have further elucidated the mechanistic underpinnings that underlie altered CSF3R expression, dimerization, and signaling activation.


Subject(s)
Gain of Function Mutation , Receptors, Colony-Stimulating Factor/genetics , Receptors, Colony-Stimulating Factor/metabolism , Amino Acid Substitution , Animals , Cell Line , Cell Transformation, Neoplastic , Cysteine/metabolism , Dimerization , Disulfides/metabolism , Endocytosis , Humans , Hydrophobic and Hydrophilic Interactions , Leukemia/genetics , Mice , Mutagenesis , Receptors, Colony-Stimulating Factor/chemistry , STAT3 Transcription Factor/metabolism , Signal Transduction , Subcellular Fractions/metabolism , Threonine/chemistry , Threonine/metabolism
2.
Cancer Res ; 77(16): 4258-4267, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28652245

ABSTRACT

Exclusive of membrane-proximal mutations seen commonly in chronic neutrophilic leukemia (e.g., T618I), functionally defective mutations in the extracellular domain of the G-CSF receptor (CSF3R) have been reported only in severe congenital and idiopathic neutropenia patients. Here, we describe the first activating mutation in the fibronectin-like type III domain of the extracellular region of CSF3R (W341C) in a leukemia patient. This mutation transformed cells via cysteine-mediated intermolecular disulfide bonds, leading to receptor dimerization. Interestingly, a CSF3R cytoplasmic truncation mutation (W791X) found on the same allele as the extracellular mutation and the expansion of the compound mutation was associated with increased leukocytosis and disease progression of the patient. Notably, the primary patient sample and cells transformed by W341C and W341C/W791X exhibited sensitivity to JAK inhibitors. We further showed that disruption of original cysteine pairs in the CSF3R extracellular domain resulted in either gain- or loss-of-function changes, part of which was attributable to cysteine-mediated dimer formation. This, therefore, represents the first characterization of unpaired cysteines that mediate both gain- and loss-of-function phenotypes. Overall, our results show the structural and functional importance of conserved extracellular cysteine pairs in CSF3R and suggest the necessity for broader screening of CSF3R extracellular domain in leukemia patients. Cancer Res; 77(16); 4258-67. ©2017 AACR.


Subject(s)
Cysteine/genetics , Leukemia, Myeloid, Acute/genetics , Mutation, Missense , Receptors, Colony-Stimulating Factor/genetics , Aged , Animals , Exome , Female , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...