Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(43): 17235-40, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24043789

ABSTRACT

Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger "total" natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere.


Subject(s)
Atmosphere/chemistry , Climate , Global Warming , Temperature , Computer Simulation , Ecosystem , Humans , Models, Theoretical , Sunlight , Volcanic Eruptions
2.
Proc Natl Acad Sci U S A ; 110(1): 26-33, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23197824

ABSTRACT

We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.


Subject(s)
Atmosphere , Climate Change , Human Activities , Models, Theoretical , Temperature , Computer Simulation , Geography , Humans , Signal-To-Noise Ratio
3.
Science ; 309(5740): 1548-51, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-16141071

ABSTRACT

Satellite-based measurements of decadal-scale temperature change in the lower troposphere have indicated cooling relative to Earth's surface in the tropics. Such measurements need a diurnal correction to prevent drifts in the satellites' measurement time from causing spurious trends. We have derived a diurnal correction that, in the tropics, is of the opposite sign from that previously applied. When we use this correction in the calculation of lower tropospheric temperature from satellite microwave measurements, we find tropical warming consistent with that found at the surface and in our satellite-derived version of middle/upper tropospheric temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...