Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 83(13): 6404-15, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19369350

ABSTRACT

The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling mice, identified many similarities between this model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time. This mouse-adapted MARV strain can now be used to develop and evaluate novel vaccines and therapeutics and may also help to provide a better understanding of the virulence factors associated with MARV.


Subject(s)
Disease Models, Animal , Marburg Virus Disease/virology , Marburgvirus/pathogenicity , Animals , Chlorocebus aethiops , Female , Liver/pathology , Liver/virology , Male , Marburgvirus/genetics , Mice , Mice, Inbred BALB C , RNA, Viral/genetics , Sequence Analysis, RNA , Serial Passage , Spleen/pathology , Spleen/virology , Vero Cells
2.
Methods Mol Biol ; 246: 37-52, 2004.
Article in English | MEDLINE | ID: mdl-14970584

ABSTRACT

The liver represents a major target organ for gene delivery owing to its high biosynthetic capacity and access to the bloodstream. Adenoviral vectors are highly efficient gene-transfer vehicles, making them among the most promising systems for in vivo gene transfer to the liver. Following intravenous administration of adenoviral vectors to a variety of mammalian models, including mice, dogs, and monkeys, hepatocytes are efficiently transduced. Several delivery methods to the liver have been described, including portal vein (2-4), hepatic artery (3,5), and peripheral vein infusions (6). This chapter describes the simple, nonsurgical method of intravenous (iv) administration of adenoviral vectors in mice, and an immunohistochemical method to qualitatively evaluate liver transduction efficiency following delivery of an adenoviral vector encoding a bgalactosidase (beta-gal) marker gene. Additionally, several alternative methods to verify efficient liver transduction are introduced.


Subject(s)
Adenoviridae/genetics , DNA, Recombinant/administration & dosage , Genetic Vectors , Liver/metabolism , Animals , Mice
3.
Hum Gene Ther ; 14(17): 1595-604, 2003 Nov 20.
Article in English | MEDLINE | ID: mdl-14633402

ABSTRACT

Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice. To evaluate possible species differences in Ad vector tropism, we characterized the effects of each detargeting mutation in non-human primates after systemic delivery to confirm our conclusions made in mice. In non-human primates, CAR was found to have minimal effects on vector delivery to all organs examined including liver and spleen. Cell-surface alpha nu integrins played a significant role in delivery of vector to the spleen, lung and kidney. The fiber shaft mutation S*, which presumably inhibits HSG binding, was found to significantly decrease delivery to all organs examined. The ability to detarget the liver corresponded with decreased elevations in liver serum enzymes (aspartate transferase [AST] and alanine transferase [ALT]) 24 hr after vector administration and also in serum interleukin (IL)-6 levels 6 hr after vector administration. The biodistribution data generated in cynomolgus monkeys correspond with those data derived from mice, demonstrating that CAR binding is not the major determinant of viral tropism in vivo. Vectors containing the fiber shaft modification may provide for a detargeted adenoviral vector on which to introduce new tropisms for the development of targeted, systemically deliverable adenoviral vectors for human clinical application.


Subject(s)
Adenoviridae/genetics , Gene Transfer Techniques , Animals , Capsid Proteins/chemistry , Cell Membrane/metabolism , Genetic Vectors , Humans , Immunohistochemistry , Integrin alphaV/biosynthesis , Interleukin-6/biosynthesis , Interleukin-6/metabolism , Liver/metabolism , Macaca fascicularis , Male , Mice , Mutation , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tissue Distribution , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL