Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformation ; 19(9): 893-900, 2023.
Article in English | MEDLINE | ID: mdl-37928487

ABSTRACT

Majority of dyes are toxic to all the living organisms and inherently resistant to microbial degradation. Hence, decolorization and degradation of textile dye methyl red were evaluated using isolated bacterial strain Pseudomonas aeruginosa (P. aeruginosa). Methyl red dye decolorization by P. aeruginosa with respect to various parameters was optimized. Data shows that maximum possible decolorization was seen at 50 ppm dye concentration, 1400 mg/l glucose concentration, 700 mg/l sodium chloride (NaCl) concentration, pH 9, temperature 38°C, 1000 mg/l urea concentration P. aeruginosa AM-1 strain. The highest percent (91.1%) of bioremediation was achieved at 40 ppm dye concentration in Allium cepa test. These findings suggest P. aeruginosa strain (AM-1) has the potential to be used in the biological treatment of highly toxic dye which is main constituent of dyeing mill effluents due to its high decolorization activity with simple conditions. Strain AW-1 strain also has potential to bioremediate other wastewater containing methyl red dye.

2.
Bioinformation ; 19(9): 901-907, 2023.
Article in English | MEDLINE | ID: mdl-37928494

ABSTRACT

Increased amounts of toxicants may cause sever health issues in humans as well as in aquatic life. Scientists are developing new technologies to combat these problems. Biological methods of detoxification are always beneficial for the environment. Pseudomonas fluorescens is known for its detoxification capacity. In this study Pseudomonas fluorescens stains were isolated from different locations of the Ha'il region, Saudia Arabia. The microbial strain AM-1 displayed resistance to heavy metals (Cr6+, Ni2+, Cd2+, Pb2+) and pesticides (BHC, 2,4-D, Mancozeb) at pollutant levels typical of highly contaminated areas. Additionally, AM-1 exhibited substantial detoxification potential, reducing toxicity by 40.67% for heavy metals and 47.4% for pesticides at 3x concentrations. These findings suggest that the AM-1 strain supports environmental remediation and pollution mitigation. Atomic absorption spectrometry (AAS) results exhibited bioremediation efficiency for metals Cr6+, Ni2+, and Pb2+ using immobilized cells of P. fluorescens AM-1 isolate, estimated to be 60.57%, 68.4%, and 53.93% respectively. These findings show that AM-1 strain has a potential role in bioremediation of water pollutants and may have future implications in wastewater treatment.

3.
Int J Biol Macromol ; 252: 126456, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37633555

ABSTRACT

This study evaluated the feasibility of using cactus mucilage (CM) to elaborate biobased composite films blended with styrene-butadiene rubber latex (SBL). The CM was extracted and precipitated with ethanol (CMET) and isopropanol (CMIS). Mucilage-based films were formulated using three levels of mucilage (4, 6, and 8 wt%). The microstructure, thickness, moisture content, density, water contact angle, water vapor permeability, film solubility, thermal stability, and toughness of mucilage films blended with SBL (SBL/CMET and SBL/CMIS) were measured. The properties of mucilage-based films varied systematically, depending on the concentration of mucilage. The addition of SBL to CM film produces compatible, hydrophobic, flexible, and stiffer films with low moisture contents and good barrier properties. The mucilage film incorporated with 6 wt% CMET and CMIS reached the highest Young's modulus of 1512 ± 21 and 1988 ± 55 MPa, respectively. The DSC of produced films reveals that the Tg of SBL/CMIS is lower than that of SBL/CMIS. The synthesized films were structurally stable at high temperatures. The biodegradability of the composite films buried in the ground shows that the produced films are 100 % biodegradable after 40 days. Thus, CM blended with SBL can benefit specific applications, especially food packaging.


Subject(s)
Opuntia , Opuntia/chemistry , Polysaccharides/chemistry , Permeability , Elastic Modulus , Solubility
4.
ACS Omega ; 8(18): 16315-16326, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179644

ABSTRACT

The large sizes of cations and anions of organic salts are the driving force for the application of ionic liquids (organic salts) in harsh salty conditions. Moreover, the formation of crosslinked ionic liquid networks as anti-rust and anticorrosion protective films on the substrate surfaces repels seawater salt and water vapor from their surface to prevent corrosion. In this respect, an imidazolium epoxy resin and polyamine hardener as ionic liquids were prepared by the condensation of either pentaethylenehexamine or ethanolamine with glyoxal and p-hydroxybenzaldehyde or formalin in acetic acid as a catalyst. The hydroxyl and phenol groups of the imidazolium ionic liquid were reacted with epichlorohydrine in the presence of NaOH as a catalyst to prepare polyfunctional epoxy resins. The chemical structure, nitrogen content, amine value, epoxy equivalent weight, thermal characteristics, and stability of the imidazolium epoxy resin and polyamine hardener were evaluated. Moreover, their curing and thermomechanical properties were investigated to confirm the formation of homogeneous, elastic, and thermally stable cured epoxy networks. The corrosion inhibition and salt spray resistance of the uncured and cured imidazolium epoxy resin and polyamine as coatings for steel in seawater were evaluated.

5.
Plants (Basel) ; 12(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36987085

ABSTRACT

To investigate the impact of biochar on eggplant growth, physiology, and yield parameters under separate and associated drought and salt stress, a pot experiment was carried out. An eggplant variety ('Bonica F1') was exposed to one NaCl concentration (S1 = 300 mM), three irrigation regimes (FI: full irrigation; DI: deficit irrigation; ARD: alternate root-zone drying irrigation), and one dose of biochar (B1 = 6% by weight). Our findings demonstrated that associated drought and salt stress had a greater negative impact on 'Bonica F1' performance in comparison to single drought or salt stress. Whereas, adding biochar to the soil improved the ability of 'Bonica F1' to alleviate the single and associated effects of salt and drought stress. Moreover, in comparison to DI under salinity, biochar addition in ARD significantly increased plant height, aerial biomass, fruit number per plant, and mean fresh weight per fruit by 18.4%, 39.7%, 37.5%, and 36.3%, respectively. Furthermore, under limited and saline irrigation, photosynthetic rate (An), transpiration rate (E), and stomatal conductance (gs) declined. In addition, the interaction between ARD and biochar effectively restored the equilibrium between the plant chemical signal (ABA) and hydraulic signal (leaf water potential). As a result, mainly under salt stress, with ARD treatment, intrinsic water use efficiency (WUEi) and yield traits were much higher than those in DI. Overall, biochar in combination with ARD could be an efficient approach for preserving crop productivity.

6.
Plants (Basel) ; 11(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145805

ABSTRACT

The impact of heat and drought stresses, either individually or combined, on physiological and biochemical parameters of four eggplant varieties (Solanum melongena L.) was investigated. The results showed that associated stress generated the highest increment in proline content, MDA concentration, and H2O2 accumulation and generated the lowest increment in RWC. In addition, 'Bonica' and 'Galine' exhibited higher starch accumulation and lower electrolyte leakage (EL) under combined stress. Moreover, drought and heat stresses applied individually contributed to a substantial decline in Chla, Chlb, total Chl, Chla/b, and carotenoids (p > 0.05) in 'Adriatica' and 'Black Beauty'. The decreasing level of pigments was more substantial under associated drought and heat stresses. The simultaneous application of drought and heat stresses reduced PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and boosted non-photochemical quenching (NPQ) levels. However, the change recorded in the chlorophyll fluorescence parameters was less pronounced in 'Bonica' and 'Galine'. In addition, the gas exchange parameters, transpiration rate (E), CO2 assimilation rate (A), and net photosynthesis (Pn) were decreased in all varieties under all stress conditions. However, the reduction was more pronounced in 'Adriatica' and 'Black Beauty'. Under associated stress, antioxidant enzymes, SOD, APX, CAT, and GR exhibited a significant increment in all eggplant cultivars. However, the rising was more elevated in 'Bonica' and 'Galine' (higher than threefold increase) than in 'Adriatica' and 'Black Beauty' (less than twofold increase). Furthermore, 'Bonica' and 'Galine' displayed higher non-enzyme scavenging activity (AsA and GSH) compared to 'Adriatica' and 'Black Beauty' under associated stress. Under stressful conditions, nutrient uptake was affected in all eggplant cultivars; however, the root, stem, and leaf N, P, and K contents, in 'Adriatica' and 'Black Beauty' were lower than in 'Bonica' and 'Galine', thereby showing less capacity in accumulating nutrients. The coexistence of drought and heat stresses caused more damage on eggplant varieties than the single appearance of drought or heat stress separately. 'Bonica' and 'Galine' showed better distinguished performance compared to 'Adriatica' and 'Black Beauty'. The superiority of 'Bonica' and 'Galine' in terms of tolerance to heat and drought stresses was induced by more effective antioxidant scavenging potential, enhanced osmolyte piling-up, and prominent ability in keeping higher photosynthetic efficiency and nutrient equilibrium compared with 'Adriatica' and 'Black Beauty'.

7.
Plants (Basel) ; 11(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35270060

ABSTRACT

The impact of salinity on the physiological and biochemical parameters of tolerant ('Bonica') and susceptible ('Black Beauty') eggplant varieties (Solanum melongena L.) was determined. The results revealed that the increase in salinity contributes to a significant decline in net photosynthesis (An) in both varieties; however, at the highest salt concentration (160 mM NaCl), the decrease in photorespiration (Rl) was less pronounced in the tolerant cultivar 'Bonica'. Stomatal conductance (gs) was significantly reduced in 'Black Beauty' following exposure to 40 mM NaCl. However, gs of 'Bonica' was only substantially reduced at the highest level of NaCl (160 mM). In addition, a significant decrease in Chla, Chlb, total Chl, Chla/b and carotenoids (p > 0.05) was found in 'Black Beauty', and soluble carbohydrates accumulation and electrolyte leakage (EL) were more pronounced in 'Black Beauty' than in 'Bonica'. The total phenols increase in 'Bonica' was 65% higher than in 'Black Beauty'. In 'Bonica', the roots displayed the highest enzyme scavenging activity compared to the leaves. Salt stress contributes to a significant augmentation of root catalase and guaiacol peroxidase activities. In 'Bonica', the Na concentration was higher in roots than in leaves, whereas in 'Black Beauty', the leaves accumulated more Na. Salt stress significantly boosted the Na/K ratio in 'Black Beauty', while no significant change occurred in 'Bonica'. ACC deaminase activity was significantly higher in 'Bonica' than in 'Black Beauty'.

8.
Environ Monit Assess ; 194(2): 126, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35080670

ABSTRACT

Heavy metal pollution is a challenging concern that threatens the soil environment and human health worldwide. The purpose of this work is to assess the heavy metals (Cr, Cu, Zn, and Pb) pollution in the urban and peri-urban soils in and around Setif city, eastern Algeria. The work combines chemical analysis of thirty-six soil samples, statistical valuation and interpretation of chemical data and pollution indices (geoaccumulation index, pollution index, and integrated pollution index) with thematic mapping. The average concentrations (in mg/kg) of Cd, Cr, Cu, Pb, and Zn were found < 0.02, 43.35, 43.75, 331.20, and 78.26 mg/kg, respectively. Compared with the French regulatory limits (AFNOR U44-041), Cd, Cr, and Cu still non-hazardous at Setif city scale; however, Zn and Pb concentrations are two to three times higher than the background values referred to the Chinese [Formula: see text] standard (GB15618-1995). The pollution indices indicate that Pb and Zn represent the highest threats among the studied pollutants and polluted wide areas of anthropogenic activities located respectively in the oldest district of the city, near the industrial zone and near uncontrolled landfill of domestic and industrial waste. Cu, Pb, and Zn originate seemly from vehicle emission, particles of brakes and tires, and industrial emissions. However, Cr distribution is uncorrelatable with anthropogenic sources. The Cr with an average concentration less than the background value derives seemly from animal feces and organic fertilizers. The integrated pollution index shows that the accumulation of heavy metals in the soils of Setif city from anthropogenic sources reached alarming levels that can disperse into the environment and threaten the human health. The urbanization and industrial development of Setif city are expected to grow and a subsequent heavy metal pollution will be rising prior issue. Corrective measures should be endeavored by the local authorities to mitigate the current environmental situation and a sustainable development plan for the city should be anticipated to guarantee optimal future environmental conditions.


Subject(s)
Metals, Heavy , Soil Pollutants , Algeria , Anthropogenic Effects , China , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
9.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 7): o1652-3, 2009 Jun 20.
Article in English | MEDLINE | ID: mdl-21582916

ABSTRACT

A new chalcone of the coumarin, C(21)H(18)O(7), containing an annulated α-pyrone ring, was obtained by condensation of the borate complex of ac-yl(hydr-oxy)coumarin with trimethoxy-benzaldehyde. The structure exhibits intra-molecular hydrogen bonding between the hydroxyl oxygen and the ketonic oxygen in the coumarin group. The bicyclic coumarin fragment and the benzene ring form a dihedral angle of 17.1 (4)°. The crystal packing involves dimers inter-connected by C-H⋯O hydrogen bonding.

SELECTION OF CITATIONS
SEARCH DETAIL
...