Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(26): 24170-6, 2001 Jun 29.
Article in English | MEDLINE | ID: mdl-11319230

ABSTRACT

Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen-presenting cells that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. Susceptibility to multiple sclerosis is associated with certain MHC class II haplotypes, including human leukocyte antigen (HLA) DR2. Two DRB chains, DRB5*0101 and DRB1*1501, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP-(84-102)) to MBP-specific T cells from multiple sclerosis patients. We have previously demonstrated that the peptide binding/T cell recognition domains of rat MHC class II (alpha1 and beta1 domains) could be expressed as a single exon for structural and functional characterization; Burrows, G. G., Chang, J. W., Bächinger, H.-P., Bourdette, D. N., Wegmann, K. W., Offner, H., and Vandenbark A. A. (1999) Protein Eng. 12, 771-778; Burrows, G. G., Adlard, K. L., Bebo, B. F., Jr., Chang, J. W., Tenditnyy, K., Vandenbark, A. A., and Offner, H. (2000) J. Immunol. 164, 6366-6371). Single-chain human recombinant T cell receptor ligands (RTLs) of approximately 200 amino acid residues derived from HLA-DR2b were designed using the same principles and have been produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native HLA-DR2 heterodimer. The proteins exhibited a cooperative two-state thermal unfolding transition, and DR2-derived RTLs with a covalently linked MBP peptide (MBP-(85-99)) showed increased stability to thermal unfolding relative to the empty DR2-derived RTLs. These novel molecules represent a new class of small soluble ligands for modulating the behavior of T cells and provide a platform technology for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease.


Subject(s)
HLA-DR Antigens/chemistry , HLA-DR Antigens/genetics , HLA-DR2 Antigen/genetics , Receptors, Antigen, T-Cell/agonists , Amino Acid Sequence , Base Sequence , HLA-DR Antigens/metabolism , HLA-DR2 Antigen/chemistry , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Myelin Basic Protein/genetics , Peptide Fragments/genetics , Protein Engineering , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Thermodynamics
2.
J Biol Chem ; 275(19): 14532-6, 2000 May 12.
Article in English | MEDLINE | ID: mdl-10799537

ABSTRACT

A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.


Subject(s)
Carrier Proteins , Hydrogen-Ion Concentration , Proteins/chemistry , Biopolymers , Circular Dichroism , Guanidine/chemistry , Static Electricity , Urea/chemistry
3.
J Biol Chem ; 275(15): 11498-506, 2000 Apr 14.
Article in English | MEDLINE | ID: mdl-10753969

ABSTRACT

Collagen XI is a heterotrimeric molecule found predominantly in heterotypic cartilage fibrils, where it is involved in the regulation of fibrillogenesis. This function is thought to involve the complex N-terminal domain. The goal of this current study was to examine its structural organization to further elucidate the regulatory mechanism. The amino-propeptide (alpha1-Npp) alone or with isoforms of the variable region were recombinantly expressed and purified by affinity and molecular sieve chromatography. Cys-1-Cys-4 and Cys-2-Cys-3 disulfide bonds were detected by liquid chromatography-tandem mass spectrometry. This pattern is identical to the homologous alpha2-Npp, indicating that the recombinant proteins were folded correctly. Anomalous elution on molecular sieve chromatography suggested that the variable region was extended, which was confirmed using rotary shadowing; the alpha1-Npp formed a globular "head" and the variable region an extended "tail." Circular dichroism spectra analysis determined that the alpha1-Npp comprised 33% beta-sheet, whereas the variable region largely comprised non-periodic structure. Taken together, these results imply that the alpha1-Npp cannot be accommodated within the core of the fibril and that the variable region and/or minor helix facilitates its exclusion to the fibril surface. This provides further support for regulation of fibril diameter by steric hindrance or by interactions with other matrix components that affect fibrillogenesis.


Subject(s)
Collagen/chemistry , Amino Acid Sequence , Animals , Circular Dichroism , Disulfides , Glycosylation , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Rats , Recombinant Proteins/isolation & purification , Tumor Cells, Cultured
4.
J Biol Chem ; 272(11): 7368-73, 1997 Mar 14.
Article in English | MEDLINE | ID: mdl-9054436

ABSTRACT

Velocity sedimentation experiments using authentic fibrillin-1 demonstrated sedimentation coefficients of s20,w0 = 5.1 +/- 0.1 in the Ca2+ form and s20,w0 = 6.2 +/- 0.1 in the Ca2+-free form. Calculations based on these results and the corresponding molecular mass predicted a shortening of fibrillin by approximately 25% and an increase in width of approximately 13-17% upon removal of Ca2+. These observations were confirmed by analysis of Ca2+-loaded and Ca2+-free rotary shadowed fibrillin molecules. Analysis of recombinant fibrillin-1 subdomain rF17, consisting primarily of an array of 12 Ca2+-binding epidermal growth factor (cbEGF)-like repeats, by analytical ultracentrifugation and rotary shadowing further confirmed Ca2+-dependent structural changes in the tertiary structure of fibrillin-1. Based on these results, the contribution of a single cbEGF-like repeat to the length of tandem arrays is predicted to be approximately 3 nm in the Ca2+ form. Ca2+-free forms demonstrated a decrease of 20-30% in length, indicating significant structural changes of these motifs when they occur in tandem. Circular dichroism measurements of rF17 in the presence and absence of Ca2+ indicated secondary structural changes within and adjacent to the interdomain regions that connect cbEGF-like repeats. The results presented here suggest a flexible structure for the Ca2+-free form of fibrillin which becomes stabilized, more extended, and rigid in the Ca2+ form.


Subject(s)
Calcium/chemistry , Microfilament Proteins/ultrastructure , Circular Dichroism , Extracellular Matrix Proteins/chemistry , Fibrillin-1 , Fibrillins , Humans , Microfilament Proteins/chemistry , Recombinant Proteins/chemistry
5.
J Mol Biol ; 261(2): 255-66, 1996 Aug 16.
Article in English | MEDLINE | ID: mdl-8757292

ABSTRACT

The cuticle collagen of the vestimentiferan Riftia pachyptila, an organism which is endemic to deep-sea hydrothermal vents, has several unusual properties including an extraordinary length (1.5 microns), a high thermal stability (37 degrees C) in spite of a low 4-hydroxyproline content and an atypically high threonine content (20 mol%). We have now purified the constituent chain of cuticle collagen and show that it contains about 40% carbohydrate, which is mainly galactose, indicating that the chain has a molecular mass of approximately 750 kDa. Several large (30 to 150 kDa) fragments, which all contained carbohydrate, could be produced by cleavage with endoproteinase Lys-C, bacterial collagenase and cyanogen bromide (CNBr). Edman degradation of these and several smaller fragments was used to determine about 3000 sequence positions comprising 60% of the total triple-helical sequence. This demonstrated mainly typical Gly-X-Y triplet repeats with a few imperfections and a longer N-terminal non-triplet sequence. Most of the 4-hydroxyproline was found in triplet position X, where it decreases the stability of the triple helix. About 40% of the Y positions could not be identified, which correlated with a low abundance of threonine in the sequence and the demonstration of threonine in these positions after deglycosylation of several peptides by treatment with hydrofluoric acid. Matrix-assisted laser desorption ionisation mass spectrometry of selected peptides indicated that the blocked threonine residues are occupied by chains of one, two or three hexoses (presumably galactose). These glycosylated threonine residues in Y positions are therefore likely to replace 4-hydroxyproline as the major contributor to triple helix stabilization. Studies with a synthetic (Gly-Pro-Thr)10 oligopeptide demonstrated a low thermal stability of its triple helix which emphasizes a crucial role of glycosylation for stabilization.


Subject(s)
Collagen/chemistry , Polychaeta/chemistry , Protein Structure, Secondary , Threonine/analysis , Amino Acid Sequence , Amino Acids/analysis , Animals , Collagen/isolation & purification , Galactose/analysis , Glycosylation , Hydroxyproline/analysis , Molecular Sequence Data , Molecular Weight , Monosaccharides/analysis , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Peptide Fragments/analysis , Peptide Fragments/chemistry , Protein Denaturation , Sequence Analysis , Threonine/chemistry
6.
J Biol Chem ; 271(23): 13781-5, 1996 Jun 07.
Article in English | MEDLINE | ID: mdl-8662808

ABSTRACT

Synthetic peptides of the three chains of type IX collagen consisting of the carboxyl-terminal end of the COL1 domain and the complete NC1 domain were characterized by circular dichroism spectroscopy and analyzed for their ability to assemble into trimers. In vitro association and oxidation result in disulfide-linked oligomers as shown by molecular sieve chromatography and SDS-polyacrylamide electrophoresis. Whereas the individual peptides show a tendency to self-associate, when an equimolar amount of the three peptides was oxidized, a heterotrimer of the three chains was observed. This heterotrimer is recognized by a monoclonal antibody against the disulfide-linked NC1 domain of chicken type IX collagen, indicating the correct formation of the disulfide bonds. Circular dichroism measurements show that under the association conditions used, a triple helix does not form between the chains. These results indicate that these peptides contain all the necessary information for chain selection and assembly.


Subject(s)
Collagen/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal , Chickens , Collagen/genetics , Collagen/immunology , Disulfides/chemistry , Epitope Mapping , Humans , In Vitro Techniques , Mice , Molecular Sequence Data , Molecular Structure , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Conformation , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...