Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35888859

ABSTRACT

The aim of this work was a deep spectroscopical characterization of a thick 4H SiC epitaxial layer and a comparison of results between samples before and after a thermal oxidation process carried out at 1400 °C for 48 h. Through Raman and photoluminescence (PL) spectroscopies, the carrier lifetimes and the general status of the epilayer were evaluated. Time-resolved photoluminescence (TRPL) was used to estimate carrier lifetime over the entire 250 µm epilayer using different wavelengths to obtain information from different depths. Furthermore, an analysis of stacking fault defects was conducted through PL and Raman maps to evaluate how these defects could affect the carrier lifetime, in particular after the thermal oxidation process, in comparison with non-oxidated samples. This study shows that the oxidation process allows an improvement in the epitaxial layer performances in terms of carrier lifetime and diffusion length. These results were confirmed using deep level transient spectroscopy (DLTS) measurements evidencing a decrease in the Z1/2 centers, although the oxidation generated other types of defects, ON1 and ON2, which appeared to affect the carrier lifetime less than Z1/2 centers.

2.
Materials (Basel) ; 14(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669492

ABSTRACT

The purpose of this work is to study the 4H-SiC epitaxial layer properties for the fabrication of a device for neutron detection as an alternative material to diamond detectors used in this field. We have studied a high growth rate process to grow a thick epitaxial layer (250 µm) of 4H-SiC and, in order to estimate the quality of the epitaxial layer, an optical characterization was done through Photoluminescence (PL) spectroscopy for stacking fault defect evaluation. Micro Raman spectroscopy was used for simultaneous determination of both carrier lifetime and induced carriers in equilibrium. We have compared these results with other two samples with an epitaxial layer of 100 micron, obtained with two different growth rates, 60 and 90 µm/h, respectively. From Raman measurements it has been observed that both the growth rate and the grown epitaxial layer thickness have an effect on the measured carrier lifetime. A comparison between different kinds of stacking faults (SF) was done, evaluating the influence of these defects on the carrier lifetime as a function of the injection level and it was observed that only at a low injection is the effect on the carrier lifetime low.

3.
Materials (Basel) ; 14(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530362

ABSTRACT

The use of wide-band-gap solid-state neutron detectors is expanding in environments where a compact size and high radiation hardness are needed, such as spallation neutron sources and next-generation fusion machines. Silicon carbide is a very promising material for use as a neutron detector in these fields because of its high resistance to radiation, fast response time, stability and good energy resolution. In this paper, measurements were performed with neutrons from the ISIS spallation source with two different silicon carbide detectors together with stability measurements performed in a laboratory under alpha-particle irradiation for one week. Some consideration to the impact of the casing of the detector on the detector's counting rate is given. In addition, the detector response to Deuterium-Deuterium (D-D) fusion neutrons is described by comparing neutron measurements at the Frascati Neutron Generator with a GEANT4 simulation. The good stability measurements and the assessment of the detector response function indicate that such a detector can be used as both a neutron counter and spectrometer for 2-4 MeV neutrons. Furthermore, the absence of polarization effects during neutron and alpha irradiation makes silicon carbide an interesting alternative to diamond detectors for fast neutron detection.

4.
Nanotechnology ; 29(33): 335404, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-29808827

ABSTRACT

Quasi-1D-hyperbranched TiO2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm-2 and reaching saturation with applied biases as low as 0.35 VRHE. The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

5.
Nanotechnology ; 28(15): 155302, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28301332

ABSTRACT

The controlled shaping of nanoparticles' morphology is one of the pillars of nanotechnology. Here, we demonstrate that photocatalytic lithography, a technique already proved to be useful in materials science, can act as a dry etching technique for noble metal nanoparticles. Triangular silver nanoprisms are self-assembled on titanium dioxide films and photocatalytically shaped into discoidal particles upon irradiation with near-UV light. The obtained patterned surfaces show a dramatically different surface-enhanced Raman scattering response, suggesting the utility of our approach for the development of sensors. The photocatalytic nature of the particle shaping is demonstrated and a plausible mechanism drawn by performing photocatalysis in different configurations (direct and remote) and by irradiating in different solvents.

6.
Phys Chem Chem Phys ; 18(7): 5232-43, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26813492

ABSTRACT

The influence of a substrate on the performance of WO3 photoanodes is assessed as a function of temperature. Two samples were studied: WO3 deposited on a FTO glass and anodized on a tungsten foil. Current-voltage curves and electrochemical impedance spectroscopy measurements were used to characterize these samples between 25 °C and 65 °C. The photocurrent density increased with temperature for both samples and the onset potential shifted to lower potentials. However, for WO3/FTO, a negative shift of the dark current onset was also observed. The intrinsic resistivity of this substrate limits the photocurrent plateau potential range. On the other hand, this behavior was not observed for WO3/metal. Therefore, the earlier dark current onset observed for WO3/FTO was assigned to the FTO layer. The optimal operating temperatures observed were 45 °C and 55 °C for WO3/FTO and WO3/metal, respectively. For higher temperatures, the bulk electron-hole recombination phenomenon greatly affects the overall performance of WO3 photoanodes. The stability behavior was then studied at these temperatures over 72 h. For WO3/FTO, a crystalline-to-amorphous phase transformation occurred during the stability test, which may justify the current decrease observed after the aging period. The WO3/metal remained stable, maintaining its morphology and good crystallinity. Interestingly, the preferential orientation of the aged crystals was shifted to the (-222) and (222) planes, suggesting that this was responsible for its better and more stable performance. These findings provide crucial information for allowing further developments on the preparation of WO3 photoanodes, envisaging their commercial application in PEC water splitting cells.

7.
Chemistry ; 20(46): 15151-8, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25257858

ABSTRACT

In a stringent and near oxygen-free environment, Si-H surfaces were introduced to a trifluoroalkyne, an alcohol-derivatized alkyne, as well as an equal mixture of both alkynes at a temperature of 130 °C. Contact angle measurements, high-resolution X-ray photoelectron spectroscopy (XPS), and angle-resolved XPS were performed to examine the system. Si-H surfaces were found to have a strong preference towards the formation of Si-O-C rather than Si-C bonds when the alcohol and alkyne reactivities were compared.


Subject(s)
Alkynes/chemistry , Silicon/chemistry , Halogenation , Hydrogen/chemistry , Photoelectron Spectroscopy , Surface Properties , Temperature
8.
ACS Appl Mater Interfaces ; 6(9): 6186-90, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24742340

ABSTRACT

Amorphous iron oxide nanoparticles were synthesized by pulsed-laser deposition (PLD) for functionalization of indium-tin oxide surfaces, resulting in electrodes capable of efficient catalysis in water oxidation. These electrodes, based on earth-abundant and nonhazardous iron metal, are able to sustain high current densities (up to 20 mA/cm2) at reasonably low applied potential (1.64 V at pH 11.8 vs reversible hydrogen electrode) for more than 1 h when employed as anodes for electrochemical water oxidation. The good catalytic performance proves the validity of PLD as a method to prepare nanostructured solid-state materials for catalysis, enabling control over critical properties such as surface coverage and morphology.

9.
Chemphyschem ; 15(6): 1164-74, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24643917

ABSTRACT

Hematite photoelectrodes prepared via a hydrothermal route are functionalized with a water oxidation catalyst consisting of amorphous Fe(III) oxide, obtained by successive ionic layer adsorption and reaction. The performances of the catalyst-modified photoanodes are considerably higher than those of the parent electrodes, resulting in a nearly doubled photoanodic current in all the basic aqueous electrolytes explored in this study. The combination of electrochemical impedance spectroscopy and laser flash photolysis indicates that the presence of the catalyst results in enhanced hole trapping in surface reactive states exposed to the electrolyte, allowing for a more successful competition between charge transfer and recombination.

10.
Phys Chem Chem Phys ; 15(31): 13083-92, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23820552

ABSTRACT

Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(iii) oxides gave the best results, leading to photoanodes capable of efficiently splitting water, with photocurrent densities up to 6 ± 1 mA cm(-2) at 0 V vs. the reversible hydrogen electrode (RHE) under AM 1.5 G simulated sunlight illumination. The resulting Solar To Hydrogen (STH) conversion efficiencies, measured in two electrodes configuration, were in the range 3.7-5%, depending on the counter electrode that was employed. Investigations on the stability showed that these photoanodes were able to sustain 120 minutes of continuous illumination with a < 10% photocurrent loss at 0 V vs. RHE. Pristine photoanodic response of the cells could be fully restored by an additional SILAR cycle, evidencing that the observed loss is due to the detachment of the more weakly surface bound catalyst.


Subject(s)
Electric Power Supplies , Oxygen/chemistry , Solar Energy , Water/chemistry , Catalysis , Oxidation-Reduction
11.
Chem Soc Rev ; 42(6): 2228-46, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23223715

ABSTRACT

Some recent studies mainly addressing the preparation and the modification of nanostructured thin films based on WO(3) and their application to photoelectrolysis of aqueous electrolytes are reviewed with the aim of rationalizing the main factors at the basis of an efficient photoanodic response. WO(3) represents one of the few materials which can achieve efficient water photo-oxidation under visible illumination, stably operating under strongly oxidizing conditions; thus the discussion of the structure-related photoelectrochemical properties of WO(3) thin films and their optimization for achieving almost quantitative photon to electron conversion constitutes the core of this contribution.

12.
Chemphyschem ; 13(12): 3025-34, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22532437

ABSTRACT

Anodically grown WO(3) photoelectrodes prepared in an N-methylformamide (NMF) electrolyte have been investigated with the aim of exploring the effects induced by anodization time and water concentration in the electrochemical bath on the properties of the resulting photoanodes. An n-type WO(3) semiconductor is one of the most promising photoanodes for hydrogen production from water splitting and the electrochemical anodization of tungsten allows very good photoelectrodes, which are characterized by a low charge-transfer resistance and an increased spectral response in the visible region, to be obtained. These photoanodes were investigated by a combination of steady state and transient photoelectrochemical techniques and a correlation between photocurrent produced, morphology, and charge transport has been evaluated.

13.
Langmuir ; 27(11): 7276-84, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21542603

ABSTRACT

The potentiostatic anodization of metallic tungsten has been investigated in different solvent/electrolyte compositions with the aim of improving the water oxidation ability of the tungsten oxide layer. In the NMF/H(2)O/NH(4)F solvent mixture, the anodization leads to highly efficient WO(3) photoanodes, which, combining spectral sensitivity, an electrochemically active surface, and improved charge-transfer kinetics, outperform, under simulated solar illumination, most of the reported nanocrystalline substrates produced by anodization in aqueous electrolytes and by sol-gel methods. The use of such electrodes results in high water electrolysis yields of between 70 and 90% in 1 M H(2)SO(4) under a potential bias of 1 V versus SCE and close to 100% in the presence of methanol.

14.
Top Curr Chem ; 303: 39-94, 2011.
Article in English | MEDLINE | ID: mdl-21547685

ABSTRACT

Recent advances in the field of photoelectrochemical cells (PECs) applied to solar water and H2S splitting and hydrogen production are reviewed with meaningful examples and case studies. At the molecular level, significant recent efforts have been directed towards the development of stable dye sensitizers/water oxidation catalyst assemblies. In the field of photoactive nanostructured materials and interfaces, novel highly ordered semiconductors nanostructures (i.e., anodically grown titania nanotubes) are drawing an increasing interest, under both the fundamental and applicative points of view, due to improved charge transfer kinetics with respect to more conventional sintered nanoparticle substrates. These features, coupled with low cost and ease of fabrication, stand as a good promise for the realization of solar devices capable of solar hydrogen production at a useful rate.

15.
Inorg Chem ; 49(7): 3320-8, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20210301

ABSTRACT

The use of TiO(2) photoanodes sensitized with ruthenium(II) polypyridine complexes bearing phosphonic acid anchoring groups has been investigated in the context of photoinduced hydrogen generation. The photoanodes sustained 240 h of irradiation without undergoing appreciable hydrolysis and decomposition in an aqueous environment at pH 3. While the use of organic sacrificial donors, like ascorbic acid, considerably enhanced the photoanodic response, the exploitation of iodide was more problematic because the adsorption of photogenerated I(3)(-) from aqueous media favored charge recombination with conduction band electrons, thus limiting the efficiency of the photoelectrosynthetic device. However, experiments performed in a three-compartment cell, where the photolectrode was in contact with an organic solvent, showed a remarkable photocurrent, with an electrolysis yield close to 87%.

16.
J Phys Chem A ; 112(36): 8403-10, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18710202

ABSTRACT

Local structure and site distribution of extra-framework copper ions in over-exchanged Cu-MCM22 zeolite were determined by a combination of high resolution X-ray powder diffraction and computational analysis. X-ray diffraction data suggested the presence of three Cu sites in six-membered rings and one site in a five-membered ring close to the interlamellar region, inside the MCM-22 supercage, whereas no Cu ions were found within the sinusoidal channels. First principle molecular orbital DFT calculations were employed to obtain, for the first time, an accurate structural description of the Cu(I) sites in the supercage, adding a structural and energetic interpretation to previous IR and EPR studies. The combined experimental and computational study suggested that Cu(I) sites facing 6-MRs are particularly stable. In general 5- or 4-fold coordination sites are located in 6-MRs while 2- or 3-fold coordination sites are located in 5-MRs. Three preferentially occupied sites were found in copper-exchanged MCM-22. X-ray photoelectron spectroscopy suggested the formation of dispersed Cu close to the surface of MCM-22 crystallites, easily reduced to Cu(I) under ultrahigh vacuum conditions.

17.
Int J Oral Maxillofac Implants ; 20(1): 23-30, 2005.
Article in English | MEDLINE | ID: mdl-15747670

ABSTRACT

PURPOSE: The aim of this study was to evaluate the surface chemistry and the microhardness at the implant-bone interface using a recently developed collagen-coated titanium implant in a short-term rabbit model. MATERIALS AND METHODS: Surface chemistry was evaluated by x-ray photoelectron spectroscopy (XPS), while in vivo studies involved 4-week implants mid-diaphysis in the lateral femurs of adult male rabbits. After conventional embedding and evaluation of histologic sections, the resinembedded blocks containing the implanted screws were used to measure bone hardness by means of an indentation test. RESULTS: Decomposition of the C1s peak obtained by XPS analysis confirmed that surface-immobilized collagen retained all the molecular features of the control, nonimmobilized reference. As to microhardness measurement, newly formed bone at the collagen-coated-implant/bone interface was significantly harder than bone at the interface of the uncoated control implant and bone. DISCUSSION: These results suggested that collagen coating significantly improves bone maturation and mineralization at the interface in comparison with uncoated commercially pure titanium. Surface modification of titanium implants by collagen coating has recently been discussed as a promising approach to the biochemical modification of implant surfaces. The present results support previous histologic findings and demonstrated that the biomolecular layer linked over the titanium implant can increase the bone healing rate, at least in this animal model. CONCLUSIONS: The present microhardness measurement at the bone-implant interface showed that collagen coating can significantly improve bone maturation and mineralization at the interface in comparison with uncoated commercially pure titanium, confirming and substantiating previous findings by histomorphometric measurements from the same model.


Subject(s)
Bone and Bones/chemistry , Coated Materials, Biocompatible , Collagen/chemistry , Implants, Experimental , Animals , Bone Screws , Bone and Bones/physiology , Calcification, Physiologic , Collagen/physiology , Femur , Hardness , Male , Materials Testing , Models, Animal , Rabbits , Spectrometry, X-Ray Emission , Surface Properties , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...