Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 186: 114452, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36473244

ABSTRACT

This study investigates for the first time the presence of microplastics in sediment, water, and benthic organisms (foraminifera) of a marine cave in the Gulf of Orosei (Sardinia, Italy). Microplastics were found in all water, and sediment samples with similar shapes, sizes, and compositions; identified items were mainly fragments and fibers constituted by PVC and polyethylene. Their provenance was supposed to be predominantly from the sea than from the seasonal freshwater supplies from the karst system. Foraminiferal assemblages were mainly constituted by calcareous hyaline taxa in the outer station, while in the inner ones, the agglutinated Eggerelloides advenus was dominant. FTIR analyses on agglutinated shells identified polyethylene. Microplastic items are collected by the foraminifers and sediment grains building the shell chambers. This is the first study providing evidence that marine caves may be collectors of microplastics and that, in these habitats, microplastics enter the biotic matrix at the protist's level.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Microplastics , Plastics/analysis , Geologic Sediments/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Italy , Polyethylene/analysis , Water/analysis
2.
Sci Rep ; 10(1): 2436, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051491

ABSTRACT

The management of large amounts of eggshell waste annually produced in the world is problematic as generally this material is only disposed at landfills with odor production and microbial growth. On the contrary, significant environmental and economic advantages could be obtained transforming this biowaste into new value-added products. Eggshell biowaste was the starting material for the synthesis of hydroxyapatite by a simple and sustainable procedure and applied for the removal of Co2+ from aqueous solutions. The effects of contact time and initial metal concentration were investigated in batch experiments. Eggshell-based hydroxyapatite (ESHAP) before and after Co2+ removal was characterized by X-ray diffraction and scanning electron microscopy. The process was rapid and reached equilibrium within 80 min. The removal efficiency was in the range 70-80% which is generally higher than other waste-derived adsorbents. Adsorption of Co2+ on the surface of ESHAP particles and ion exchange with Ca2+ resulting in the formation of a Co-phosphate are the main mechanisms of the metal removal. The conversion of eggshell waste to a low-cost adsorbent for the treatment of metal contaminated waters could contribute to a more sustainable and effective management of this biowaste.

SELECTION OF CITATIONS
SEARCH DETAIL
...