Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(10): 1714-1728, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37710042

ABSTRACT

The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.


Subject(s)
Petromyzon , Vertebrates , Animals , Mice , Phylogeny , Vertebrates/genetics , Petromyzon/genetics , Head , Brain
3.
Evodevo ; 14(1): 8, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147719

ABSTRACT

The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.

4.
Front Mol Neurosci ; 15: 918871, 2022.
Article in English | MEDLINE | ID: mdl-35832392

ABSTRACT

Axon regrowth after spinal cord injury (SCI) is inhibited by several types of inhibitory extracellular molecules in the central nervous system (CNS), including chondroitin sulfate proteoglycans (CSPGs), which also are components of perineuronal nets (PNNs). The axons of lampreys regenerate following SCI, even though their spinal cords contain CSPGs, and their neurons are enwrapped by PNNs. Previously, we showed that by 2 weeks after spinal cord transection in the lamprey, expression of CSPGs increased in the lesion site, and thereafter, decreased to pre-injury levels by 10 weeks. Enzymatic digestion of CSPGs in the lesion site with chondroitinase ABC (ChABC) enhanced axonal regeneration after SCI and reduced retrograde neuronal death. Lecticans (aggrecan, versican, neurocan, and brevican) are the major CSPG family in the CNS. Previously, we cloned a cDNA fragment that lies in the most conserved link-domain of the lamprey lecticans and found that lectican mRNAs are expressed widely in lamprey glia and neurons. Because of the lack of strict one-to-one orthology with the jawed vertebrate lecticans, the four lamprey lecticans were named simply A, B, C, and D. Using probes that distinguish these four lecticans, we now show that they all are expressed in glia and neurons but at different levels. Expression levels are relatively high in embryonic and early larval stages, gradually decrease, and are upregulated again in adults. Reductions of lecticans B and D are greater than those of A and C. Levels of mRNAs for lecticans B and D increased dramatically after SCI. Lectican D remained upregulated for at least 10 weeks. Multiple cells, including glia, neurons, ependymal cells and microglia/macrophages, expressed lectican mRNAs in the peripheral zone and lesion center after SCI. Thus, as in mammals, lamprey lecticans may be involved in axon guidance and neuroplasticity early in development. Moreover, neurons, glia, ependymal cells, and microglia/macrophages, are responsible for the increase in CSPGs during the formation of the glial scar after SCI.

5.
Front Cell Dev Biol ; 10: 809979, 2022.
Article in English | MEDLINE | ID: mdl-35242758

ABSTRACT

Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.

6.
Dev Biol ; 476: 282-293, 2021 08.
Article in English | MEDLINE | ID: mdl-33887266

ABSTRACT

The evolution of vertebrates from an invertebrate chordate ancestor involved the evolution of new organs, tissues, and cell types. It was also marked by the origin and duplication of new gene families. If, and how, these morphological and genetic innovations are related is an unresolved question in vertebrate evolution. Hyaluronan is an extracellular matrix (ECM) polysaccharide important for water homeostasis and tissue structure. Vertebrates possess a novel family of hyaluronan binding proteins called Lecticans, and studies in jawed vertebrates (gnathostomes) have shown they function in many of the cells and tissues that are unique to vertebrates. This raises the possibility that the origin and/or expansion of this gene family helped drive the evolution of these vertebrate novelties. In order to better understand the evolution of the lectican gene family, and its role in the evolution of vertebrate morphological novelties, we investigated the phylogeny, genomic arrangement, and expression patterns of all lecticans in the sea lamprey (Petromyzon marinus), a jawless vertebrate. Though both P. marinus and gnathostomes each have four lecticans, our phylogenetic and syntenic analyses are most consistent with the independent duplication of one of more lecticans in the lamprey lineage. Despite the likely independent expansion of the lamprey and gnathostome lectican families, we find highly conserved expression of lecticans in vertebrate-specific and mesenchyme-derived tissues. We also find that, unlike gnathostomes, lamprey expresses its lectican paralogs in distinct subpopulations of head skeleton precursors, potentially reflecting an ancestral diversity of skeletal tissue types. Together, these observations suggest that the ancestral pre-duplication lectican had a complex expression pattern, functioned to support mesenchymal histology, and likely played a role in the evolution of vertebrate-specific cell and tissue types.


Subject(s)
Hyalectins/genetics , Petromyzon/genetics , Animals , Biological Evolution , Evolution, Molecular , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genome , Hyalectins/metabolism , Hyaluronic Acid/metabolism , Lampreys/genetics , Phylogeny , Vertebrates/genetics
7.
Nature ; 585(7826): 563-568, 2020 09.
Article in English | MEDLINE | ID: mdl-32939088

ABSTRACT

Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.


Subject(s)
Endothelins/metabolism , Evolution, Molecular , Neural Crest/cytology , Petromyzon/metabolism , Signal Transduction , Xenopus/metabolism , Animals , Bone Development , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Lineage , Endothelins/genetics , Female , Head/growth & development , Heart/growth & development , Larva/growth & development , Ligands , Male , Petromyzon/genetics , Petromyzon/growth & development , Receptors, Endothelin/deficiency , Receptors, Endothelin/genetics , Receptors, Endothelin/metabolism , Xenopus/genetics , Xenopus/growth & development
8.
Proc Natl Acad Sci U S A ; 117(40): 24876-24884, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958671

ABSTRACT

Whereas the gill chambers of jawless vertebrates open directly into the environment, jawed vertebrates evolved skeletal appendages that drive oxygenated water unidirectionally over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single large gill cover in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here, we find that these divergent patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs. We identify a deeply conserved Pou3f3 arch enhancer present in humans through sharks but undetectable in jawless fish. Minor differences between the bony and cartilaginous fish enhancers account for their restricted versus pan-arch expression patterns. In zebrafish, mutation of Pou3f3 or the conserved enhancer disrupts gill cover formation, whereas ectopic pan-arch Pou3f3b expression generates ectopic skeletal elements resembling the multimeric covers of cartilaginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya and subsequent modifications may thus have contributed to the acquisition and diversification of gill covers and respiratory strategies during gnathostome evolution.


Subject(s)
Enhancer Elements, Genetic , Evolution, Molecular , Gills/growth & development , POU Domain Factors/genetics , Vertebrates/genetics , Animals , Fishes/classification , Fishes/genetics , Fishes/growth & development , Mutation , Phylogeny , Sharks/classification , Sharks/genetics , Sharks/growth & development , Vertebrates/classification , Vertebrates/growth & development
9.
Dev Biol ; 418(1): 166-178, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27502435

ABSTRACT

Vertebrate SoxE genes (Sox8, 9, and 10) are key regulators of neural crest cell (NCC) development. These genes arose by duplication from a single SoxE gene in the vertebrate ancestor. Although SoxE paralogs are coexpressed early in NCC development, later, Sox9 is restricted to skeletogenic lineages in the head, and Sox10 to non-skeletogenic NCC in the trunk and head. When this subfunctionalization evolved and its possible role in the evolution of the neural crest are unknown. Sea lampreys are basal vertebrates that also possess three SoxE genes, while only a single SoxE is present in the cephalochordate amphioxus. In order to address the functional divergence of SoxE genes, and to determine if differences in their biochemical functions may be linked to changes in neural crest developmental potential, we examined the ability of lamprey and amphioxus SoxE genes to regulate differentiation of NCC derivatives in zebrafish colourless (cls) mutants lacking expression of sox10. Our findings suggest that the proto-vertebrate SoxE gene possessed both melanogenic and neurogenic capabilities prior to SoxE gene duplication. Following the agnathan-gnathostome split, lamprey SoxE1 and SoxE3 largely lost their melanogenic and/or enteric neurogenic properties, while gnathostome SoxE paralogs have retained functional conservation. We posit that this difference in protein subfunctionalization is a direct consequence of the independent regulation of SoxE paralog expression between the two lineages. Specifically, we propose that the overlapping expression of gnathostome SoxE paralogs in early neural crest largely constrained the function of gnathostome SoxE proteins. In contrast, the largely non-overlapping expression of lamprey SoxE paralogs allowed them to specialize with regard to their DNA-binding and/or protein interaction properties. Restriction of developmental potential among cranial and trunk neural crest in lampreys may be related to constraints on SoxE activity among duplicates, but such specialization does not appear to have occurred in gnathostomes. This highlights an important difference in the evolution of SoxE activity between these two divergent vertebrate lineages and provides insights for understanding how cell fate restriction in different NCC populations may be dependent on subfunctionalization among SoxE duplicates.


Subject(s)
Gene Expression Regulation, Developmental , Lampreys/embryology , Lancelets/embryology , Neural Crest/embryology , SOXE Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Biological Evolution , Cell Differentiation/genetics , Gene Duplication/genetics , Microphthalmia-Associated Transcription Factor/biosynthesis , Neural Crest/cytology , Neurogenesis/genetics , Zebrafish Proteins/biosynthesis
10.
Development ; 142(23): 4180-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26511928

ABSTRACT

Lamprey is one of only two living jawless vertebrates, a group that includes the first vertebrates. Comparisons between lamprey and jawed vertebrates have yielded important insights into the origin and evolution of vertebrate physiology, morphology and development. Despite its key phylogenetic position, studies of lamprey have been limited by their complex life history, which makes traditional genetic approaches impossible. The CRISPR/Cas9 system is a bacterial defense mechanism that was recently adapted to achieve high-efficiency targeted mutagenesis in eukaryotes. Here we report CRISPR/Cas9-mediated disruption of the genes Tyrosinase and FGF8/17/18 in the sea lamprey Petromyzon marinus, and detail optimized parameters for producing mutant F0 embryos. Using phenotype and genotype analyses, we show that CRISPR/Cas9 is highly effective in the sea lamprey, with a majority of injected embryos developing into complete or partial mutants. The ability to create large numbers of mutant embryos without inbred lines opens exciting new possibilities for studying development in lamprey and other non-traditional model organisms with life histories that prohibit the generation of mutant lines.


Subject(s)
CRISPR-Cas Systems , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Lampreys/genetics , Mutagenesis , Animals , Base Sequence , Body Patterning , Cloning, Molecular , Evolution, Molecular , Genotype , In Situ Hybridization , Molecular Sequence Data , Monophenol Monooxygenase/metabolism , Mutation , Phenotype , Phylogeny , Sequence Homology, Nucleic Acid , Time Factors
11.
Evodevo ; 6: 18, 2015.
Article in English | MEDLINE | ID: mdl-25984292

ABSTRACT

BACKGROUND: Retinoic acid (RA) signaling controls many developmental processes in chordates, from early axis specification to late organogenesis. The functions of RA are chiefly mediated by a subfamily of nuclear hormone receptors, the retinoic acid receptors (RARs), that act as ligand-activated transcription factors. While RARs have been extensively studied in jawed vertebrates (that is, gnathostomes) and invertebrate chordates, very little is known about the repertoire and developmental roles of RARs in cyclostomes, which are extant jawless vertebrates. Here, we present the first extensive study of cyclostome RARs focusing on three different lamprey species: the European freshwater lamprey, Lampetra fluviatilis, the sea lamprey, Petromyzon marinus, and the Japanese lamprey, Lethenteron japonicum. RESULTS: We identified four rar paralogs (rar1, rar2, rar3, and rar4) in each of the three lamprey species, and phylogenetic analyses indicate a complex evolutionary history of lamprey rar genes including the origin of rar1 and rar4 by lineage-specific duplication after the lamprey-hagfish split. We further assessed their expression patterns during embryonic development by in situ hybridization. The results show that lamprey rar genes are generally characterized by dynamic and highly specific expression domains in different embryonic tissues. In particular, lamprey rar genes exhibit combinatorial expression domains in the anterior central nervous system (CNS) and the pharyngeal region. CONCLUSIONS: Our results indicate that the genome of lampreys encodes at least four rar genes and suggest that the lamprey rar complement arose from vertebrate-specific whole genome duplications followed by a lamprey-specific duplication event. Moreover, we describe a combinatorial code of lamprey rar expression in both anterior CNS and pharynx resulting from dynamic and highly specific expression patterns during embryonic development. This 'RAR code' might function in regionalization and patterning of these two tissues by differentially modulating the expression of downstream effector genes during development.

12.
Nature ; 520(7548): 456-65, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25903627

ABSTRACT

Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.


Subject(s)
Chordata/anatomy & histology , Chordata/embryology , Phylogeny , Animals , Body Patterning , Chordata/classification , Endoderm/embryology , Gills/anatomy & histology , Gills/embryology , Mesoderm/embryology
13.
Nature ; 518(7540): 534-7, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25487155

ABSTRACT

A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.


Subject(s)
Biological Evolution , Cartilage , Head , Lancelets/anatomy & histology , Lancelets/growth & development , Skull , Vertebrates/anatomy & histology , Animals , Cartilage/cytology , Cartilage/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Genes, Reporter/genetics , Lancelets/cytology , Larva/anatomy & histology , Larva/cytology , Models, Biological , Mouth/anatomy & histology , Neural Crest/cytology , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Signal Transduction , Skull/cytology , Skull/metabolism , Zebrafish/embryology , Zebrafish/genetics
14.
Development ; 141(3): 629-38, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24449839

ABSTRACT

A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.


Subject(s)
Biological Evolution , Bone and Bones/embryology , Fibroblast Growth Factors/metabolism , Head/embryology , Lampreys/embryology , Osteogenesis , Pharynx/embryology , Animals , Bone and Bones/drug effects , Cartilage/cytology , Cartilage/drug effects , Cartilage/embryology , Embryo, Nonmammalian , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental/drug effects , Lampreys/genetics , Larva/drug effects , Larva/metabolism , Models, Biological , Neural Crest/cytology , Neural Crest/drug effects , Neural Crest/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Pharynx/drug effects , Pharynx/metabolism , Pyrroles/pharmacology , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Signal Transduction/genetics , Tretinoin/pharmacology , Xenopus laevis
15.
Development ; 139(22): 4220-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23034628

ABSTRACT

Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Fibroblast Growth Factors/metabolism , Homeodomain Proteins/biosynthesis , Neural Crest/metabolism , Neural Plate/metabolism , Paired Box Transcription Factors/biosynthesis , Transcription Factors/biosynthesis , Wnt Proteins/metabolism , Zebrafish Proteins/biosynthesis , Animals , Animals, Genetically Modified , Body Patterning/genetics , Body Patterning/physiology , Embryo, Nonmammalian/metabolism , Gastrulation , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Neural Crest/cytology , Neural Plate/cytology , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Transcription Factors/genetics , Wnt Signaling Pathway , Zebrafish/embryology , Zebrafish Proteins/genetics
16.
Evol Dev ; 14(1): 104-15, 2012.
Article in English | MEDLINE | ID: mdl-23016978

ABSTRACT

Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.


Subject(s)
Body Patterning/genetics , Chordata, Nonvertebrate/embryology , Germ Layers/metabolism , Lampreys/embryology , RNA, Messenger, Stored/metabolism , SOXB1 Transcription Factors/genetics , SOXF Transcription Factors/genetics , Animals , Chordata, Nonvertebrate/genetics , Gene Expression Regulation, Developmental , Germ Layers/embryology , Lampreys/genetics , Larva/genetics , Larva/metabolism , SOXB1 Transcription Factors/metabolism , SOXF Transcription Factors/metabolism , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...