Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577921

ABSTRACT

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Subject(s)
Adipose Tissue , Proto-Oncogene Mas , Receptors, G-Protein-Coupled , Renin-Angiotensin System , Animals , Humans , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/metabolism , Obesity/pathology , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System/physiology , Signal Transduction
2.
Life Sci ; 291: 120269, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34974075

ABSTRACT

INTRODUCTION: Obesity-related metabolic diseases occur as a result of disruptions in white adipose tissue (WAT) plasticity, especially through visceral fat accumulation and adipocyte hypertrophy. This study aimed to evaluate the impact of renin-angiotensin system (RAS) and bradykinin receptors modulation by enalapril treatment and/or exercise training on WAT morphology and related deleterious outcomes. METHODS: Male C57BL/6 mice were fed either a standard chow or a high-fat (HF) diet for 16 weeks. At the 8th week, HF-fed animals were divided into sedentary (HF), enalapril treatment (HF-E), exercise training (HF-T), and enalapril treatment plus exercise training (HF-ET) groups. Following the experimental protocol, body mass gain, adiposity index, insulin resistance, visceral WAT morphometry, renin-angiotensin system, and bradykinin receptors were evaluated. RESULTS: The HF group displayed increased adiposity, larger visceral fat mass, and adipocyte hypertrophy, which was accompanied by insulin resistance, overactivation of Ang II/AT1R arm, and favoring of B1R in bradykinin receptors profile. All interventions ameliorated visceral adiposity and related outcomes by favoring the Ang 1-7/MasR arm and the B2R expression in B1R/B2R ratio. However, combined therapy additively reduced Ang II/Ang 1-7 ratio. CONCLUSION: Our results suggest that Ang 1-7/MasR arm and B2R activation might be relevant targets in the treatment of visceral obesity.


Subject(s)
Enalapril/pharmacology , Physical Conditioning, Animal/physiology , Renin-Angiotensin System/physiology , Adipose Tissue, White/metabolism , Adiposity/drug effects , Adiposity/physiology , Animals , Diet, High-Fat , Enalapril/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/physiology , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Obesity, Abdominal/metabolism , Receptors, Bradykinin/metabolism , Renin-Angiotensin System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...