Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Biomater Sci Eng ; 9(1): 458-473, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36048716

ABSTRACT

Even after over 2 years of the COVID-19 pandemic, research on rapid, inexpensive, and accurate tests remains essential for controlling and avoiding the global spread of SARS-CoV-2 across the planet during a potential reappearance in future global waves or regional outbreaks. Assessment of serological responses for COVID-19 can be beneficial for population-level surveillance purposes, supporting the development of novel vaccines and evaluating the efficacy of different immunization programs. This can be especially relevant for broadly used inactivated whole virus vaccines, such as CoronaVac, which produced lower titers of neutralizing antibodies. and showed lower efficacy for specific groups such as the elderly and immunocompromised. We developed an impedimetric biosensor based on the immobilization of SARS-CoV-2 recombinant trimeric spike protein (S protein) on zinc oxide nanorod (ZnONR)-modified fluorine-doped tin oxide substrates for COVID-19 serology testing. Due to electrostatic interactions, the negatively charged S protein was immobilized via physical adsorption. The electrochemical response of the immunosensor was measured at each modification step and characterized by scanning electron microscopy and electrochemical techniques. We successfully evaluated the applicability of the modified ZnONR electrodes using serum samples from COVID-19 convalescent individuals, CoronaVac-vaccinated with or without positive results for SARS-CoV-2 infection, and pre-pandemic samples from healthy volunteers as controls. ELISA for IgG anti-SARS-CoV-2 spike protein was performed for comparison, and ELISA for IgG anti-RBDs of seasonal coronavirus (HCoVs) was used to test the specificity of immunosensor detection. No cross-reactivity with HCoVs was detected using the ZnONR immunosensor, and more interestingly, the sensor presented higher sensitivity when compared to negative ELISA results. The results demonstrate that the ZnONRs/spike-modified electrode displayed sensitive results for convalescents and vaccinated samples and shows excellent potential as a tool for the population's assessment and monitoring of seroconversion and seroprevalence.


Subject(s)
Biosensing Techniques , COVID-19 , Zinc Oxide , Aged , Humans , Pandemics , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus , COVID-19/diagnosis , COVID-19/prevention & control , Immunoassay , SARS-CoV-2 , Immunoglobulin G
3.
Front Immunol ; 13: 812126, 2022.
Article in English | MEDLINE | ID: mdl-35300337

ABSTRACT

CoronaVac is an inactivated SARS-CoV-2 vaccine that has been rolled out in several low and middle-income countries including Brazil, where it was the mainstay of the first wave of immunization of healthcare workers and the elderly population. We aimed to assess the T cell and antibody responses of vaccinated individuals as compared to convalescent patients. We detected IgG against SARS-CoV-2 antigens, neutralizing antibodies against the reference Wuhan SARS-CoV-2 strain and used SARS-CoV-2 peptides to detect IFN-g and IL-2 specific T cell responses in a group of CoronaVac vaccinated individuals (N = 101) and convalescent (N = 72) individuals. The frequency among vaccinated individuals, of whom 96% displayed T cell and/or antibody responses to SARS-CoV-2, is comparable to 98.5% responses of convalescent individuals. We observed that among vaccinated individuals, men and individuals 55 years or older developed significantly lower anti-RBD, anti-NP and neutralization titers against the Wuhan strain and antigen-induced IL-2 production by T cells. Neutralizing antibody responses for Gamma variant were even lower than for the Wuhan strain. Even though some studies indicated CoronaVac helped reduce mortality among elderly people, considering the appearance of novel variants of concern, CoronaVac vaccinated individuals above 55 years old are likely to benefit from a heterologous third dose/booster vaccine to increase immune response and likely protection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Immunization, Secondary , Interleukin-2 , Male , Middle Aged , SARS-CoV-2 , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...