Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(6): 534, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727864

ABSTRACT

Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia coli , Fertilizers , Manure , Animals , Swine , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Manure/microbiology , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
2.
Microorganisms ; 11(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38004724

ABSTRACT

Escherichia coli is a key indicator of food hygiene, and its monitoring in meat samples points to the potential presence of antimicrobial-resistant strains capable of causing infections in humans, encompassing resistance profiles categorized as serious threats by the Centers for Disease Control and Prevention (CDC), such as Extended-Spectrum Beta-Lactamase (ESBL)-a problem with consequences for animal, human, and environmental health. The objective of the present work was to isolate and characterize ESBL-producing E. coli strains from poultry, pork, and beef meat samples, with a characterization of their virulence and antimicrobial resistance profiles. A total of 450 meat samples (150 chicken, 150 beef, and 150 pork) were obtained from supermarkets and subsequently cultured in medium supplemented with cefotaxime. The isolated colonies were characterized biochemically, followed by antibiogram testing using the disk diffusion technique. Further classification involved biofilm formation and the presence of antimicrobial resistance genes (blaCTX-M, AmpC-type, mcr-1, and fosA3), and virulence genes (eaeA, st, bfpA, lt, stx1, stx2, aggR, iss, ompT, hlyF, iutA, iroN, fyuA, cvaC, and hylA). Statistical analysis was performed via the likelihood-ratio test. In total, 168 strains were obtained, with 73% originating from chicken, 22% from pork, and 17% from beef samples. Notably, strains exhibited greater resistance to tetracycline (51%), ciprofloxacin (46%), and fosfomycin (38%), apart from ß-lactams. The detection of antimicrobial resistance in food-isolated strains is noteworthy, underscoring the significance of antimicrobial resistance as a global concern. More than 90% of the strains were biofilm producers, and strains carrying many ExPEC genes were more likely to be biofilm formers (OR 2.42), which increases the problem since the microorganisms have a greater chance of environment persistence and genetic exchange. Regarding molecular characterization, bovine samples showed a higher prevalence of blaCTX-M-1 (OR 6.52), while chicken strains were more likely to carry the fosA3 gene (OR 2.43, CI 1.17-5.05) and presented between 6 to 8 ExPEC genes (OR 2.5, CI 1.33-5.01) compared to other meat samples. Concerning diarrheagenic E. coli genes, two strains harbored eae. It is important to highlight these strains, as they exhibited both biofilm-forming capacities and multidrug resistance (MDR), potentially enabling colonization in diverse environments and causing infections. In conclusion, this study underscores the presence of ß-lactamase-producing E. coli strains, mainly in poultry samples, compared to beef and pork samples. Furthermore, all meat sample strains exhibited many virulence-associated extraintestinal genes, with some strains harboring diarrheagenic E. coli (DEC) genes.

3.
Folia Microbiol (Praha) ; 65(4): 735-745, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32180120

ABSTRACT

Overpopulation of domestic pigeons is considered to be one of the major problems of urban centers, as these birds are responsible for the dissemination of relevant pathogens to animal and human health. The aim of this study was to detect potentially pathogenic Escherichia coli and Salmonella spp. in domestic pigeons captured in areas near silos used for grain and feed storage, analyzing the antimicrobial sensitivity and the presence of virulence-associated genes. We evaluated 41 pigeons. From each bird, cecal contents and a pool of viscera (heart, spleen, and liver) were collected. Fifty strains of E. coli and three strains of S. Typhimurium were isolated. The antimicrobial susceptibility assay showed that 2% of the isolates of E. coli were resistant to chloramphenicol and the combination of sulfamethoxazole + trimethoprim and 4% to tetracycline, doxycycline, and sulfonamide. The three S. Typhimurium strains were sensitive to all antimicrobials tested. The pathogenicity profile demonstrated that no E. coli isolates showed a STEC compatible profile. Regarding the APEC pathotype, all genes were observed in 8% of E. coli, 6% had only the iss gene and 4% presented ompT, hlyF, and iutA genes. invA, hilA, avrA, and lpfA genes were detected in 100% of Salmonella isolates. The sitC and pefA genes were only present in one strain and the remaining genes were detected in two. In conclusion, it was found that pigeons living in the vicinity of silos are carriers of important pathogens, and control measures should be taken to minimize animal and human health risks.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/veterinary , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Poultry Diseases/microbiology , Salmonella/drug effects , Salmonella/pathogenicity , Animals , Animals, Domestic/microbiology , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Proteins/genetics , Brazil/epidemiology , Columbidae/microbiology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/isolation & purification , Microbial Sensitivity Tests , Phylogeny , Poultry Diseases/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Virulence/genetics
4.
Front Microbiol ; 11: 604544, 2020.
Article in English | MEDLINE | ID: mdl-33505374

ABSTRACT

This study discussed the use of antimicrobials in the commercial chicken production system and the possible factors influencing the presence of Extended-spectrum ß-lactamase (ESBL)/AmpC producers strains in the broiler production chain. The aim of this study was to perform longitudinal monitoring of ESBL-producing and fosfomycin-resistant Escherichia coli from poultry farms in southern Brazil (Paraná and Rio Grande do Sul states) and determine the possible critical points that may be reservoirs for these strains. Samples of poultry litter, cloacal swabs, poultry feed, water, and beetles (Alphitobius sp.) were collected during three distinct samplings. Phenotypic and genotypic tests were performed for characterization of antimicrobial resistant strains. A total of 117 strains were isolated and 78 (66%) were positive for ESBL production. The poultry litter presented ESBL positive strains in all three sampled periods, whereas the cloacal swab presented positive strains only from the second period. The poultry litter represents a significant risk factor mainly at the beginning poultry production (odds ratio 6.43, 95% confidence interval 1-41.21, p < 0.05). All beetles presented ESBL positive strains. The predominant gene was bla CTX-M group 2, which occurred in approximately 55% of the ESBL-producing E. coli. The cit gene was found in approximately 13% of the ESBL-producing E. coli as AmpC type determinants. A total of 19 out of 26 fosfomycin-resistant strains showed the fosA3 gene, all of which produced ESBL. The correlation between fosA3 and bla CTX-M group 1 (bla CTX-M55 ) genes was significant among ESBL-producing E. coli isolated from Paraná (OR 3.66, 95% CI 1.9-9.68) and these genetic determinants can be transmitted by conjugation to broiler chicken microbiota strains. Our data revealed that poultry litter and beetles were critical points during poultry production and the presence of fosfomycin-resistant strains indicate the possibility of risks associated with the use of this antimicrobial during production. Furthermore, the genetic determinants encoding CTX-M and fosA3 enzymes can be transferred to E. coli strains from broiler chicken microbiota, thereby creating a risk to public health.

5.
Res Vet Sci ; 114: 355-362, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28675873

ABSTRACT

Several factors are known to affect the intestinal microbiota of cattle. However, how these changes occur over time is poorly understood. This study aimed to investigate the consequences of entrance into a feedlot and the effects of virginiamycin used as a growth promoter on the bovine fecal microbiota. Two batches of beef cattle (B1, n=50 and B2, n=36) entering a feedlot operation were randomly divided into two pens: one receiving virginiamycin and one group not receiving antibiotic (control group). Fecal samples were collected at arrival, mid feedlot and at exit to slaughter. The V4 region of 16S rRNA gene was amplified and sequenced. Escherichia coli strains isolated in samples from arrival and exit of B2 were also isolated and used as indicators of antimicrobial susceptibility. Marked changes in membership and structure of fecal microbiota occurred following entrance into the feedlot. At mid feedlot, virginiamycin affected bacterial community membership, but not structure, suggesting that the antibiotic had a stronger effect on the rare, but not on the most abundant species. The use of virginiamycin had no demonstrable effect on antibiotic resistance in E. coli. The differences found between batches are suggestive that variations in study conditions are important and can strongly affect the intestinal microbiota.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cattle/genetics , Cattle/microbiology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Feces/microbiology , Virginiamycin/pharmacology , Animal Husbandry/methods , Animals , Brazil , High-Throughput Nucleotide Sequencing/veterinary , Random Allocation
6.
J Infect Dev Ctries ; 9(10): 1068-75, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26517481

ABSTRACT

INTRODUCTION: Extraintestinal pathogenic Escherichia coli (ExPEC) is associated with various diseases such as urinary tract infections, neonatal meningitis and septicemia. There are many virulence factors (VF) encoded by genes in ExPEC, including papC, papG, ecpA, iroN, fyuA, iutA, ompTp, tsh, hlyF, hlyA and iss. These virulence genes may be present in pathogenicity islands (PAI) or plasmids. METHODOLOGY: In this study, we analyzed the presence of VF encoding genes, PAI sequences and phylogenetic groups of 96 ExPEC strains isolated from the urine and blood of patients at the University Hospital of Londrina, and we compared them with 50 faecal commensal strains from healthy individuals. RESULTS: The VF fyuA (65.60%) was detected in pathogenic strains and commensal strains (46%). A comparison of the distribution of ExPEC and commensal strains in the phylogenetic groups showed that more ExPEC strains belonged to group B2 whereas more of the commensal isolates belonged to group A. The distribution of the seven PAI sequences between commensal strains and ExPEC strains showed that PAI IV536 was common in both ExPEC and commensal isolates. CONCLUSIONS: These results showed that the ExPEC strains that belonged to group B2 had more PAI sequences compared to those of the other groups, especially group B1, which had virulence genes but the lowest percentage of PAI sequences, which leads us to conclude that the virulence of ExPEC strains characterized as B2 is likely attributed to PAI encoded genes, whereas the virulence of ExPEC strains belonging to phylogenetic group B1 is likely due to plasmid encoded virulence genes.


Subject(s)
Bacteremia/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Genomic Islands , Urinary Tract Infections/microbiology , Virulence Factors/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Escherichia coli/isolation & purification , Female , Genotype , Hospitals, University , Humans , Male , Middle Aged , Plasmids/analysis , Virulence , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...