Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Mem Inst Oswaldo Cruz ; 105(6): 746-51, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20944987

ABSTRACT

Cardiac damage is a frequent manifestation of Chagas disease, which is caused by the parasite Trypanosoma cruzi. Selenium (Se) is an essential micronutrient, the deficiency of which has been implicated in the development of cardiomyopathy. Our group has previously demonstrated that Se supplementation prevents myocardial damage during acute T. cruzi infection in mice. In this study, we analyzed the effect of Se treatment in cases of T. cruzi infection using prevention and reversion schemes. In the Se prevention scheme, mice were given Se supplements (2 ppm) starting two weeks prior to inoculation with T. cruzi(Brazil strain) and continuing until 120 days post-infection (dpi). In the Se reversion scheme, mice were treated with Se (4 ppm) for 100 days, starting at 160 dpi. Dilatation of the right ventricle was observed in the infected control group at both phases of T. cruzi infection, but it was not observed in the infected group that received Se treatment. Surviving infected mice that were submitted to the Se reversion scheme presented normal P wave values and reduced inflammation of the pericardium. These data indicate that Se treatment prevents right ventricular chamber increase and thus can be proposed as an adjuvant therapy for cardiac alterations already established by T. cruzi infection.


Subject(s)
Chagas Disease/drug therapy , Dietary Supplements , Heart Ventricles/pathology , Selenium/therapeutic use , Acute Disease , Animals , Chagas Cardiomyopathy/prevention & control , Chagas Disease/pathology , Chronic Disease , Dilatation, Pathologic/prevention & control , Magnetic Resonance Imaging/methods , Male , Mice , Selenium/administration & dosage
2.
Mem. Inst. Oswaldo Cruz ; 105(6): 746-751, Sept. 2010. ilus, graf
Article in English | LILACS | ID: lil-560657

ABSTRACT

Cardiac damage is a frequent manifestation of Chagas disease, which is caused by the parasite Trypanosoma cruzi. Selenium (Se) is an essential micronutrient, the deficiency of which has been implicated in the development of cardiomyopathy. Our group has previously demonstrated that Se supplementation prevents myocardial damage during acute T. cruzi infection in mice. In this study, we analyzed the effect of Se treatment in cases of T. cruzi infection using prevention and reversion schemes. In the Se prevention scheme, mice were given Se supplements (2 ppm) starting two weeks prior to inoculation with T. cruzi(Brazil strain) and continuing until 120 days post-infection (dpi). In the Se reversion scheme, mice were treated with Se (4 ppm) for 100 days, starting at 160 dpi. Dilatation of the right ventricle was observed in the infected control group at both phases of T. cruzi infection, but it was not observed in the infected group that received Se treatment. Surviving infected mice that were submitted to the Se reversion scheme presented normal P wave values and reduced inflammation of the pericardium. These data indicate that Se treatment prevents right ventricular chamber increase and thus can be proposed as an adjuvant therapy for cardiac alterations already established by T. cruziinfection.


Subject(s)
Animals , Male , Mice , Chagas Disease , Dietary Supplements , Heart Ventricles/pathology , Selenium , Acute Disease , Chronic Disease , Chagas Cardiomyopathy , Chagas Disease/pathology , Dilatation, Pathologic , Magnetic Resonance Imaging/methods , Selenium
3.
J Leukoc Biol ; 82(3): 488-96, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17540734

ABSTRACT

We have demonstrated recently that the glycoinositolphospholipid (GIPL) molecule from the protozoan Trypanosoma cruzi is a TLR4 agonist with proinflammatory effects. Here, we show that GIPL-induced neutrophil recruitment into the peritoneal cavity is mediated by at least two pathways: one, where IL-1beta acts downstream of TNF-alpha, and a second, which is IL-1beta- and TNFRI-independent. Moreover, NKT cells participate in this proinflammatory cascade, as in GIPL-treated CD1d(-/-) mice, TNF-alpha and MIP-2 levels are reduced significantly. As a consequence of this inflammatory response, spleen and lymph nodes of GIPL-treated mice have an increase in the percentage of T and B cells expressing the CD69 activation marker. Cell-transfer experiments demonstrate that T and B cell activation by GIPL is an indirect effect, which relies on the expression of TLR4 by other cell types. Moreover, although signaling through TNFRI contributes to the activation of B and gammadelta+ T cells, it is not required for increasing CD69 expression on alphabeta+ T lymphocytes. It is interesting that T cells are also functionally affected by GIPL treatment, as spleen cells from GIPL-injected mice show enhanced production of IL-4 following in vitro stimulation by anti-CD3. Together, these results contribute to the understanding of the inflammatory properties of the GIPL molecule, pointing to its potential role as a parasite-derived modulator of the immune response during T. cruzi infection.


Subject(s)
Glycolipids/physiology , Inflammation Mediators/physiology , Phospholipids/physiology , Toll-Like Receptor 4/metabolism , Trypanosoma cruzi/immunology , Animals , Antigens, CD1/genetics , Antigens, CD1/physiology , Antigens, CD1d , Chemokine CXCL2 , Chemokines/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Glycolipids/administration & dosage , Glycolipids/pharmacology , Immunity, Innate/genetics , Interleukin-1beta/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Phospholipids/administration & dosage , Phospholipids/pharmacology , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/physiology , T-Lymphocytes/metabolism , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...