Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 62(16): 3517-24, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24716625

ABSTRACT

Ureases are abundant in plants, bacteria, and in the soil, but their role in signaling between soybean and soil microorganisms has not been investigated. The bacterium Bradyrhizobium japonicum forms nitrogen-fixing nodules on soybean roots. Here, we evaluated the role(s) of ureases in the process of soybean nodulation. Chemotaxis assays demonstrated that soybean and jack bean ureases were more chemotactic toward bacterial cells than the corresponding plant lectins. The eu1-a,eu4 soybean, deficient in urease isoforms, formed fewer but larger nodules than the wild-type, regardless of the bacterial urease phenotype. Leghemoglobin production in wild-type plants was higher and peaked earlier than in urease-deficient plants. Inhibition of urease activity in wild-type plants did not result in the alterations seen in mutated plants. We conclude that soybean urease(s) play(s) a role in the soybean-B. japonicum symbiosis, which is independent of its ureolytic activity. Bacterial urease does not play a role in nodulation.


Subject(s)
Bradyrhizobium/physiology , Glycine max/enzymology , Plant Proteins/metabolism , Plant Root Nodulation , Root Nodules, Plant/enzymology , Urease/metabolism , Root Nodules, Plant/microbiology , Glycine max/microbiology , Glycine max/physiology , Symbiosis
2.
J Exp Bot ; 62(10): 3599-608, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21430294

ABSTRACT

The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO(2) in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is 'spoiled' by the altered missense Ch02UreF proteins ('epistatic dominant-negative'). In agreement with active 'spoiling' by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of 'functional divergence' of duplicated genes.


Subject(s)
DNA Mutational Analysis/methods , Glycine max/enzymology , Glycine max/genetics , Urease/metabolism , Nickel/metabolism , Phenotype , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seeds/enzymology , Seeds/genetics , Seeds/metabolism , Glycine max/metabolism , Urease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...