Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Environ Technol ; : 1-14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686920

ABSTRACT

This study evaluated the effectiveness of a natural coagulant based on common mallow (Malva sylvestris) to remove turbidity in urban wastewater. A 22 factorial design was selected to determine the optimal dose and the working pH of the natural coagulant. Its potential was studied in 50.0-450 mg/L and 4.00-10.0 ranges of doses and pH, respectively. A simplex lattice mixture evaluated its effectiveness as a coagulant aid combined with aluminum sulfate (conventional coagulant). Mixture proportions 0.000-1.00 were studied for each component, finding the proportion more effective. Results showed that the coagulation treatment could be feasible since a turbidity removal efficiency of 73.7% can be achieved under optimal conditions (50.0 mg/L and pH of 10.0). Likewise, a turbidity removal of 58.9% is obtained using 250 mg/L and maintaining wastewater pH (7.45). This efficiency can be increased using 31.0% natural coagulant mixed with 69.0% aluminum sulfate at 250 mg/L without modifying the wastewater pH. This improvement was associated with the natural coagulant's high molecular weight and long-chained structure since these properties enhance settling time, floc size and strength, and low sludge production. These results support using common mallow as a natural coagulant, making its use more feasible in alkaline water pH or as a coagulant aid combined with aluminum sulfate for urban wastewater treatment. A cost of USD 370/Kg of natural coagulant was estimated, which is higher than conventional coagulants. However, a cost-effectiveness analysis of its implementation should be performed since process scaling costs could significantly reduce its price.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334529

ABSTRACT

This study explores cutting-edge and sustainable green methodologies and technologies for the synthesis of functional nanomaterials, with a specific focus on the removal of water contaminants and the application of kinetic adsorption models. Our research adopts a conscientious approach to environmental stewardship by synergistically employing eco-friendly silver nanoparticles, synthesized using Justicia spicigera extract as a biogenic reducing agent, in conjunction with Mexican zeolite to enhance contaminant remediation, particularly targeting Cu2+ ions. Structural analysis, utilizing X-ray diffraction (XRD) and high-resolution scanning and transmission electron microscopy (TEM and SEM), yields crucial insights into nanocomposite structure and morphology. Rigorous linear and non-linear kinetic models, encompassing pseudo-first order, pseudo-second order, Freundlich, and Langmuir, are employed to elucidate the kinetics and equilibrium behaviors of adsorption. The results underscore the remarkable efficiency of the Zeolite-Ag composite in Cu2+ ion removal, surpassing traditional materials and achieving an impressive adsorption rate of 98% for Cu. Furthermore, the Zeolite-Ag composite exhibits maximum adsorption times of 480 min. In the computational analysis, an initial mechanism for Cu2+ adsorption on zeolites is identified. The process involves rapid adsorption onto the surface of the Zeolite-Ag NP composite, followed by a gradual diffusion of ions into the cavities within the zeolite structure. Upon reaching equilibrium, a substantial reduction in copper ion concentration in the solution signifies successful removal. This research represents a noteworthy stride in sustainable contaminant removal, aligning with eco-friendly practices and supporting the potential integration of this technology into environmental applications. Consequently, it presents a promising solution for eco-conscious contaminant remediation, emphasizing the utilization of green methodologies and sustainable technologies in the development of functional nanomaterials.

3.
Environ Res ; 246: 118162, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38218517

ABSTRACT

This study investigated the application of adsorption with activated carbons (ACs) and photodegradation to reduce the concentration of triclosan (TCS) in aqueous solutions. Concerning adsorption, ACs (Darco, Norit, and F400) were characterised and batch experiments were performed to elucidate the effect of pH on equilibrium. The results showed that at pH = 7, the maximum adsorption capacity of TCS onto the ACs was 18.5 mg g-1 for Darco, 16.0 mg g-1 for Norit, and 15.5 mg g-1 for F400. The diffusional kinetic model allowed an adequate interpretation of the experimental data. The effective diffusivity varied and increased with the amount of TCS adsorbed, from 1.06 to 1.68 × 10-8 cm2 s-1. In the case of photodegradation, it was possible to ensure that the triclosan molecule was sensitive to UV light of 254 nm because the removal was over 80 % using UV light. The removal of TCS increased in the presence of sulfate radicals. It was possible to identify 2,4-dichlorophenol as one of the photolytic degradation products of triclosan, which does not represent an environmental hazard at low concentrations of triclosan in water. These results confirm that the use of AC Darco, Norit, and F400 and that photodegradation processes with UV light and persulfate radicals are effective in removing TCS from water, reaching concentration levels that do not constitute a risk to human health or environmental hazard. Both methods effectively eliminate pollutants with relatively easy techniques to implement.


Subject(s)
Triclosan , Water Pollutants, Chemical , Humans , Triclosan/chemistry , Charcoal/chemistry , Adsorption , Photolysis , Water , Water Pollutants, Chemical/analysis
4.
ACS Omega ; 8(47): 44675-44688, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046353

ABSTRACT

Heavy metals can act as selective agents in the development and proliferation of antibiotic-resistant bacteria through a process called coselection. In the year 2050, an estimated 10 million deaths will be caused by antibiotic-resistant bacteria; therefore, the presence of heavy metals in bodies of water represents an environmental and sanitary threat that requires efficient treatment processes and/or materials for their removal. In the present study, the effect of the hydroxyapatite coating on the adsorbent capacity of cadmium in alumina spheres was evaluated. The hydroxyapatite coating on the alumina sphere increased the surface area from 0.66 to 0.96 m2/g and the number of acid sites from 0.064 to 0.306 meq/g and displaced the IEP of hydroxyapatite from 5.37 to 4.2, increasing the Cd2+ adsorbing capacity from 59.87 mg/g to 89.37 mg/g and promoting adsorption by surface complexation. Alumina-hydroxyapatite spheres stand out for their improved adsorbent properties and easy handling, which positioned this material as a potential alternative in adsorption processes.

5.
Article in English | MEDLINE | ID: mdl-37704815

ABSTRACT

In the present research, the presence of water hyacinth (Eichhornia crassipes) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018-2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g-1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pHPZC). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.

6.
Article in English | MEDLINE | ID: mdl-37556064

ABSTRACT

The present work studied individual and binary adsorption of fluorides and As(V) in water on pleco fish bone chars (BC), as well as the effect of BC mass variation on the adsorption capacity of fluoride and As(V) in water for human consumption. The results of individual adsorption indicated that the adsorption of fluoride and As(V) on BC depends on solution pH. The adsorption capacity of fluorides at an initial concentration of 30 mg L-1 increases approximately 3 times, from 5.9 to 15.3 mg g-1, when decreasing the pH of the solution from 9 to 5, however, for the case of As(V) an antagonistic effect is observed, the adsorption capacity increases 7 times when raising the pH from 5 to 9, from 18.4 to 132.1 µg g-1 at an initial As(V) concentration of 300 µg L-1. Besides, in the binary adsorption, BC showed a higher affinity to adsorb fluoride since its adsorption capacity decreased from 16.55 to 12.50 mg g-1 as the As(V) concentration increased from 0 to 800 µg L-1 in solution. In contrast, As(V) adsorption was severely affected, decreasing from 140.2 to 32.7 µg g-1 when the fluoride concentration in the solution increased from 0 to 100 mg L-1. On the other hand, in the adsorption of groundwater contaminated with fluoride and As(V), it was determined that increasing the mass of BC from 0.5 to 20 g increases the removal percentage, reaching 99.3 and 75.7% removal for fluoride and As(V), respectively, due to the fact that increasing the mass of the adsorbent leads to a larger area and a greater number of sites that allow the adsorption of these contaminants. The thermodynamic study revealed the spontaneity of fluoride and As(V) adsorption, better affinity for fluoride but higher adsorption rate of As(V) on BC. Characterization techniques such as XRD and EDS allowed identifying hydroxyapatite as the mineral phase of BC, which is responsible for the adsorption of BC. By studying the effect of solution pH on the adsorption capacities and the characterization of BC such as XRD, EDS and TGA, it was determined that the mechanisms of fluoride adsorption are by electrostatic attractions and ion exchange, and for As(V) it is by coprecipitation and ion exchange. It was concluded that BC from pleco fish could be an alternative for treating water contaminated by fluorides and As(V).

7.
Environ Sci Pollut Res Int ; 30(39): 90741-90756, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37462867

ABSTRACT

Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.


Subject(s)
Environmental Pollutants , Molecular Imprinting , Ozone , Molecularly Imprinted Polymers , Molecular Imprinting/methods , Polymers/chemistry , Oxidative Stress , Adsorption
8.
J Environ Manage ; 338: 117830, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37004486

ABSTRACT

Algae play an extremely important ecological role. They form the basis of trophic webs, produce oxygen that allows the respiration of many of the organisms in aquatic environments, absorb CO2, and serve as refuge areas and habitats for thousands of species. Many species can also absorb organic pollutants from seawater. Algae have been used for many centuries by humans as a source of food, fertilizer, fodder, and for the extraction of compounds with antifungal, antiviral, anticancer, and antibacterial properties. More recently, some species have been used for the production of biofuels. It has been shown that mixing small proportions of algae with the feed of cattle can reduce methane emissions from their digestive activity by more than 95%. One of the most widespread but least known applications of algae is the extraction of their phycocolloids for utilization in food, pharmaceutical, wine, and textile industries, among others. These compounds have gelling, stabilizing, and thickening properties and are therefore frequently included in creams, ice creams, cheeses, jellies, flavored milks, sauces, shampoos, medications, toothpaste, and many other products. The phycocolloids agar and carrageenan are extracted from red algae, whereas alginate is extracted from brown algae, being used in dental impressions, emulsifying lotions, and paints, among others, and in the preparation of wine and beer. Algae are of particular interest in the research and development of new biosorbent materials, not only because of their high adsorption capacity, but also because they are present in the seas and oceans in abundant and easily accessible quantities. Marine algae are a promising biosorbent for the removal of heavy metals and various pollutants and, due to their intrinsic characteristics, have received increasing attention in recent decades. Their application as biosorbents for the sorption of heavy metals and radionuclides could be interpreted as the use of waste to remove waste. Algae have attracted particular interest in the field of biotechnology for economic reasons, given that large amounts are naturally produced and left lying on beaches as waste material. The composition of algae biomass makes it a promising candidate for an extensive list of applications that continues to lengthen. The development of appropriate technologies and policies can transform the presence of algae in coastal ecosystems from an unpleasant and potentially harmful phenomenon into a source of major benefits. This review discusses the capacity of algae biomass to remove pollutants and also delves into its applicability in the production of dyes, oils, and biofuels and for animal feed and fertilizer industries, among others. Further research is warranted on strategies to convert a biomass that is currently considered waste into a means of addressing environmental problems.


Subject(s)
Environmental Pollutants , Metals, Heavy , Humans , Animals , Cattle , Biomass , Ecosystem , Biofuels , Fertilizers
9.
Article in English | MEDLINE | ID: mdl-36767922

ABSTRACT

Sargassum algae has become a major environmental issue due to its abundance in the Pacific Ocean with hundreds of tons reaching the beaches of the Mexican Caribbean every year. This generates large quantities of decomposing organic matter that have a negative impact on the region's economy and ecosystems. Sargassum valorization has turned out to be a fundamental aspect to mitigate its environmental impact. This study proposes the use and application of untreated Sargassum biomass for the decontamination of waters polluted with lead (Pb) and cadmium (Cd) through single and binary adsorption tests. Physicochemical and textural properties examined by SEM, XRD, and FT-IR elucidated that Sargassum biomass is viable to be used as a potential environmental benign adsorbent, exhibiting Cd(II) and Pb(II) adsorption capacities as high as 240 mg g-1 and 350 mg g-1, respectively, outperforming conventionally used adsorbents. This is attributed to its morphology, favorable surface charge distribution, and the presence of -OH and -COH groups. A strong affinity between the biomass and metal pollutants was evidenced by a thermodynamics study, showing a spontaneous and endothermic process. This work sets a practical route for the utilization of the Sargassum biomass, demonstrating its applicability as a potential material for heavy-metal-polluted water remediation, making a substantial contribution to a circular economy system.


Subject(s)
Metals, Heavy , Sargassum , Water Pollutants, Chemical , Cadmium , Biomass , Ecosystem , Spectroscopy, Fourier Transform Infrared , Lead , Metals, Heavy/chemistry , Adsorption , Water Pollutants, Chemical/chemistry
10.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234150

ABSTRACT

The search for adsorbent materials with a certain chemical inertness, mechanical resistance, and high adsorption capacity, as is the case with alumina, is carried out with structural or surface modifications with the addition of additives or metallic salts. This research shows the synthesis, characterization, phase evolution and Cd(II) adsorbent capacity of α-Al2O3/Ba-ß-Al2O3 spheres obtained from α-Al2O3 nanopowders by the ion encapsulation method. The formation of the Ba-ß-Al2O3 phase is manifested at 1500 °C according to the infrared spectrum by the appearance of bands corresponding to AlO4 bonds and the appearance of peaks corresponding to Ba-O bonds in Raman spectroscopy. XRD determined the presence of BaO·Al2O3 at 1000 °C and the formation of Ba-ß-Al2O3 at 1600 °C. Scanning electron microscopy revealed the presence of spherical grains corresponding to α-Al2O3 and hexagonal plates corresponding to ß-Al2O3 in the spheres treated at 1600 °C. The spheres obtained have dimensions of 4.65 ± 0.30 mm in diameter, weight of 43 ± 2 mg and a surface area of 0.66 m2/g. According to the curve of pH vs. zeta potential, the spheres have an acid character and a negative surface charge of -30 mV at pH 5. Through adsorption studies, an adsorbent capacity of Cd(II) of 59.97 mg/g (87 ppm Cd(II)) was determined at pH 5, and the data were fitted to the pseudo first order, pseudo second order and Freundlich models, with correlation factors of 0.993, 0.987 and 0.998, respectively.

11.
Anal Chem ; 94(44): 15250-15260, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36197692

ABSTRACT

Rare cancers are a challenge for clinical practice, the treatment experience at major centers to which rare cancers are referred is limited and are the most difficult to diagnose. Research to identify causes or develop prevention and early detection strategies is extremely challenging. Anal cancer is an example of a rare cancer, with the human papillomavirus (HPV) infection being the most important risk factor associated. In the early stages, anal cancer does not exhibit evident symptoms. This disease is diagnosed by means of anoscopy, which diagnoses some cases of early cancer; nevertheless, sensitivity of this test ranges between 47 and 89%. Therefore, the development of new, effective, and evidence-based screening methodologies for the early detection of rare cancers is of great relevance. In this study, the potential of ATR-FTIR spectroscopy has been explored as a sensitive, nondestructive, and inexpensive analytical method for developing disease screening platforms in serum. Spectral differences were found in the regions of 1700-1100 and 1700-1400 cm-1 between the control group and the anal cancer group related to the presence of proteins and nucleic acids. The chemometric analysis presented differences in the spectral fingerprints for both spectral regions with a high sensitivity ranging from 95.2 to 99.9% and a specificity ranging from 99.2 to 100%. This is the first step that we report for a methodology that is fast, nondestructive, and easy to perform, and the high sensitivity and specificity of the method are the basis for extensive research studies to implement these technologies in the clinical field.


Subject(s)
Anus Neoplasms , Papillomavirus Infections , Male , Humans , Early Detection of Cancer , Anus Neoplasms/diagnosis , Anus Neoplasms/etiology , Risk Factors , Spectroscopy, Fourier Transform Infrared/methods
12.
Appl Radiat Isot ; 190: 110470, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36209646

ABSTRACT

Uranium (U) and Thorium (Th) concentrations are normally low in the water (<30 and 5 ng mL-1, respectively). However, we performed a direct analysis of 232Th, 234U, 235U and 238U in cenote water from the Yucatán Peninsula using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a rapid response technique to perform environmental radioactivity monitoring. Water samples were collected in 2021 from the cenotes and these were certificated by zones (PYNO, PYNE and PYSE) and monitoring depth [surface water (n = 52) and depth water (n = 48)]. Moreover, physicochemical parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), and temperature were measured in situ. Results obtained were total U and Th levels below permissible for human consumption. However, physicochemical parameters must be considered before use because it is outside the permissible limits in most cenotes. The median concentration value for 234U, 235U, 238U and 232Th in surface + depth water were 0.0001 ng mL-1, 0.0130 ng mL-1, 1.76 ng mL-1, and 0.062 ng mL-1, respectively. In addition, isotopic ratio of 235U/238U in surface + depth water was 0.00730. In addition, the PYNO zone showed a correlation between 232Th with EC and TDS. The PYSE zone showed a correlation between 232Th and temperature, and 235U/234U with pH, while PYEN did not show correlations. In conclusion, the first time evaluated U isotope concentrations and isotopic ratios of U and 232Th in cenote water from the Yucatán Peninsula, where U and Th concentrations were found below the permissible limits mentioned by guidelines for drinking-water quality. The average of 235U/238U is similar to isotopic ratios in "natural" water.


Subject(s)
Thorium , Uranium , Humans , Isotopes/analysis , Mexico , Thorium/analysis , Uranium/analysis
13.
Sci Rep ; 12(1): 9917, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705682

ABSTRACT

This study evaluated the effectiveness of a biocoagulant produced from the devilfish invasive species and its combination with two chemical coagulants (aluminum sulfate and ferric sulfate) to remove turbidity, chemical oxygen demand, and total suspended solids in ceramic industry wastewater using a combined experimental design of Mixture-Process. This design optimized the coagulation process and evaluated the effects and interactions between mixture components and coagulant doses. An analysis of variance was used to analyze the experimental data obtained in the study, and the response surface plots by response type (turbidity, chemical oxygen demand, and total suspended solids) were obtained. Results showed that the coagulation treatment could be technically and economically feasible since efficiencies of turbidity, chemical oxygen demand, and total suspended solids removal of 74, 79, and 94% could be achieved using an optimal coagulant dose of 800 mg/L with a mixture of 35% biocoagulant and 65% ferric sulfate. Analysis of variance results showed that the models are significant, and the lack of fit is not required according to the probability value (p value), which were < 0.0001, and > 0.05, respectively. Hence, the experimental data were fitted to a combined reduced special cubic x linear model. These results support the use of devilfish meal as a biocoagulant, being more feasible in dual systems when mixed with ferric sulfate.


Subject(s)
Water Pollutants, Chemical , Water Purification , Ceramics , Flocculation , Introduced Species , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
14.
Data Brief ; 42: 108138, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35496485

ABSTRACT

Groundwater with high fluoride concentrations has been recognized as one of the serious concerns worldwide. Besides, the fluoride released into the groundwater by slow dissolution of fluoride-containing rocks, various industries also contribute to fluoride pollution [1]. Excess intake of fluoride leads to various health problems such as dental and skeletal fluorosis, cancer, infertility, brain damage, thyroid diseases, etc. [2]. On the other hand, bromide is naturally present in surface and groundwater sources. However, during the chlorination process, bromide can be oxidized to HOBr, which can react with natural organic matter in water to form brominated organic disinfection byproducts, which are very harmful to human health [3]. Among various methods for water treatment, the adsorption process has been widely used and seems to be an efficient and attractive method for the removal of many contaminants in water, such as anions, in terms of cost, simplicity of design, and operation [4], [5]. In the past years, xerogels and carbon xerogels, a new type of adsorbents, which are synthesized by the sol-gel polycondensation of resorcinol and formaldehyde, have gained attention due to their moldable texture and chemical properties [6]. Moreover, melamine addition in resorcinol and formaldehyde xerogels adds basic groups on its surface, favouring Lewis acid-base interactions between xerogels and other components by adsorption [7]. In this data article, the synthesis of three resorcinol-formaldehyde (R/F) xerogels with an increasing amount of melamine (M) was carried out by colloidal polymerization (molar ratios of M/R = 0.5, M/R = 1.0, and M/R = 2.0). Additionally, samples of M/R = 0.5 xerogel were carbonized at 400, 450, and 550 °C under an inert atmosphere to increase their specific area. Organic and carbon xerogels obtained were characterized by FTIR, TGA, SEM, Physisorption of N2, and the pH at the point of zero charge (pHPZC). All organic xerogels were also tested as adsorbents on the removal of fluoride and bromide ions from aqueous phase. The Freundlich, Langmuir, and Radke-Prausnitz isotherm models were applied to interpret the experimental data from adsorption equilibrium. Additionally, the data of the mass of the xerogel needed to remove fluoride and bromide from groundwater and fulfill the maximum concentration levels are also included.

15.
Environ Sci Pollut Res Int ; 29(30): 45885-45902, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35149949

ABSTRACT

In this study, a series of molecularly imprinted polymers (MIPs) have been synthesized using separately diclofenac, naproxen, and ibuprofen as templates with three different polymerization approaches. Two functional monomers, methacrylic acid (MAA) and 2-vinylpyridine (2-VP), were tested and ethylene glycol dimethacrylate (EGDMA) was used as crosslinker; also, template-free polymers (NIPs) were synthesized. It was found that the MIP with the highest retention percentage for diclofenac was the one prepared by the emulsion approach and with MAA (98.3%); for naproxen, the one prepared by the bulk polymerization with MAA (99%); and for ibuprofen, the one synthesized by bulk with 2-VP (97.7%). These three MIPs were characterized by scanning electron microscopy, thermogravimetric test, Fourier transform infrared, specific area measurements, and surface charge. It was found that the emulsion method allowed particle size control, while the bulk method gave heterogeneous particles. The three evaluated MIPs exhibited thermal stability up to 300 °C, and it was observed that 2-VP confers greater stability to the material. From the BET analysis, it was demonstrated that the MIPs and NIPs evaluated are mesoporous materials with a pore size between 10 and 20 nm. In addition, the monomer influenced the surface charge of the material, since the MAA conferred an acidic point of zero charge (PZC), while the 2-VP conferred a PZC of basic character. Through adsorption isotherms, it was determined  that there is a higher adsorption capacity of the MIPs at acidic pH following a pseudo-second-order kinetic model. Finally, the MIPs were used to determine the non-steroidal anti-inflammatory drugs (NSAIDs) understudy in San Luis Potosí, México, wastewater, finding concentrations of 0.642, 0.985, and 0.403 mg L-1 for DCF, NPX, and IBP, respectively.


Subject(s)
Molecular Imprinting , Adsorption , Anti-Inflammatory Agents, Non-Steroidal/analysis , Diclofenac/analysis , Emulsions , Ibuprofen , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Naproxen/analysis , Wastewater/analysis
16.
Polymers (Basel) ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616387

ABSTRACT

The present study investigated the effectiveness of two biopolymer coagulants on turbidity and chemical oxygen demand removal in urban wastewater. The biopolymers were produced from vegetal biomass using the mucilage extracted from Opuntia robusta cladodes, and Uncaria tomentosa leaves. Opuntia robusta is an abundant species in Mexico, which is not edible. Uncaria tomentosa is an exotic invasive species in Mexico and other countries, which negatively affects the ecosystems where it is introduced. A combined experimental design of mixture-process was selected to evaluate the effectiveness of both biopolymer coagulants regarding aluminum sulfate (conventional chemical coagulant). Results showed turbidity and chemical oxygen demand removal efficiencies of 42.3% and 69.6% for Opuntia robusta and 17.2% and 39.4% for Uncaria tomentosa biopolymer coagulant, respectively, at a dose of 200 mg/L. Furthermore, optimum conditions from the experimental design to reach the maximum turbidity and chemical oxygen demand removal were obtained at an Opuntia robusta biopolymer coagulant concentration of 10 mg/L, showing removal efficiencies of 68.7 ± 1.7% and 86.1 ± 1.4%, respectively. These results support using Opuntia robusta as an alternative biopolymer coagulant in urban wastewater treatment.

17.
Article in English | MEDLINE | ID: mdl-34086520

ABSTRACT

Ibuprofen degradation and energy generation in a single-chamber Microbial Fuel Cell (MFC) were evaluated using a bioanode fabricated from devil fish bone char (BCA) synthesized by calcination in air atmosphere. Its performance was compared with conventional carbon felt (CF). Bone char textural properties were determined by nitrogen adsorption. Before and after, the bacterial colonization on the materials was analyzed by environmental scanning electron microscopy. Energy generation was evaluated by electrochemical techniques as open-circuit potential, linear sweep voltammetry, and electrochemical impedance spectroscopy. Ibuprofen degradation was analyzed by High-Performance Liquid Chromatography-Ultraviolet, and the chemical oxygen demand (COD) removal was measured. Results showed a specific area of 136 m2/g for BCA, having enough space to immobilize microorganisms. The micrographs confirmed the biofilm formation on the electrode materials. Over the 14 days, MFC with BCA reached a maximum power density of 4.26 mW/m2, 175% higher than CF, and an electron transfer resistance 2.1 times lower than it. This coincides with the COD removal and ibuprofen degradation efficiencies, which were 43.6% and 34% for BCA and 31.8% and 27% for CF. Hence, these findings confirmed that BCA in MFC could provide an alternative electrode material for ibuprofen degradation and energy generation.


Subject(s)
Bioelectric Energy Sources , Biological Oxygen Demand Analysis , Carbon , Electricity , Electrodes , Ibuprofen
18.
Int J Biol Macromol ; 183: 2293-2304, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34097967

ABSTRACT

In this work, the synthesis of crosslinked chitosan hydrogels was performed by ionic and covalent interactions using tripolyphosphate (TPP) and formaldehyde (CH2O), respectively. The hydrogels synthesis was performed using a D-Optimal combined experiment design with two mixing variables, A and B representing the TPP weight fraction (slack variable) and CH2O weight fraction, respectively, and three (3) process variables C-chitosan concentration, D-cross-linker concentration, and E-Contact time. The response variables studied were the point of zero charge (pHPZC), the swelling ratio (SW), and the equilibrium water content (EWC), which are relevant physicochemical properties in applications such as the pollutant removal from water. According to the ANOVA results, the model obtained was significant; this means it can be adequately used to predicting pHPZC, SW, and EWC from the mixing and process variables, obtaining coefficients of determination R2 of 0.9572, 0.8900, and 0.8447, respectively. The pHPZC is affected by chitosan concentration, while the crosslinker concentration influences the SW, and the contact time most significantly affected the EWC. Morphology and hardness tests, thermal stability, infrared spectroscopy, and scanning electron microscopy, allowed verifying the types of crosslinking of chitosan with TPP and CH2O.


Subject(s)
Chitosan/chemistry , Cross-Linking Reagents/chemistry , Formaldehyde/chemistry , Polyphosphates/chemistry , Hardness , Hydrogels , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Surface Properties , Temperature , Time Factors
19.
Environ Res ; 184: 109334, 2020 05.
Article in English | MEDLINE | ID: mdl-32199318

ABSTRACT

Chili seeds (CS) represent one of the most abundant residues in Mexico due to the high production and consumption. In this work, CS were used as raw material for the production of low-cost adsorbents for the removal of methylene blue from water. The adsorbents were synthesized from a hydrothermal treatment (based on a surface response experiment design) and characterized texturally by assessing changes in their properties. The mass yield (%R), carbon content (%C), and the second order adsorption rate constant (k2) were derived in relation to a list of input variables (e.g., the reaction temperature, residence time, and water/biomass ratio). Accordingly, those output variables were affected most sensitively by temperature and/or residence time, while changes of the water/biomass ratio were insignificant. Besides, an increase in the reaction temperature favored the degradation of the lignocellulosic material with increases in the carbon fixation. The adsorption capacity of methylene blue (MB) by the hydrochars depended drastically on the oxygen/carbon ratio. As such, the maximum adsorption capacity value of 145 mg g-1 was attained at the initial MB concentration of ~3000 µM (optimal oxygen/carbon value of 0.43). On the other hand, the maximum partition coefficient (KD) was estimated as 2.96 µM-1 mg g-1 with the initial/equilibrium concentrations of 20.5/6.93 µM. The performance evaluation between different studies, when made in terms of KD, suggests that the tested hydrochar should be one of the best adsorbents to treat methylene blue, especially at near-real environmental conditions (e.g., below micromolar levels).


Subject(s)
Capsicum , Water Pollutants, Chemical , Water Purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Methylene Blue/analysis , Mexico , Seeds/chemistry , Water , Water Pollutants, Chemical/analysis
20.
J Environ Manage ; 256: 109956, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31818750

ABSTRACT

In this study, bone char (BC) from pleco fish (Pterygoplichthys spp.) was synthesized, and their textural and physicochemical properties, as well as its adsorption capacity towards fluoride and Cd(II) from single and binary aqueous solutions, were determined. The results showed that the properties of the BCs were independent of the type of bone used and the surface areas were close to 110 m2 g-1. The effect of solution pH revealed that the adsorption capacity of BC towards fluoride from water raised by decreasing the solution pH. This trend was attributed to the electrostatic interaction between the positively charged surface and the fluoride in aqueous solution. On the contrary, the capacity of BC for adsorbing Cd(II) was enhanced by increasing the solution pH, indicating that electrostatic interactions were also essential but with a contrary effect in comparison with fluoride adsorption due to the negatively charged surface at pH above the point zero charge (pHPZC = 8.16). The experimental data for binary adsorption of fluoride and Cd(II) were interpreted satisfactorily using the modified Freundlich multicomponent isotherm (EFMI), and the experimental data revealed that Cd(II) have an antagonistic effect on the adsorption of fluoride, whereas the presence of fluoride does not affect the capacity of BC for adsorbing Cd(II). Thermogravimetric, XRD diffraction and IR spectroscopy analysis corroborated that the adsorption of fluoride in BC is due to electrostatic attractions, ion exchange or chemisorption and physisorption. Besides, the removal of Cd(II) occurs by physical adsorption and ion exchange. It was concluded that BC is an alternative material for the removal of fluoride and Cd(II) from aqueous solutions, and it is a possible application for using the bones of this invasive fish species.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Animals , Cadmium , Fluorides , Hydrogen-Ion Concentration , Introduced Species , Kinetics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...