Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Water Res ; 259: 121843, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38824794

ABSTRACT

Escherichia coli (E. coli) plays a central role as an indicator for fecal contamination to predict the possible presence of microbial pathogens in drinking water. Current detection methods for E. coli are based on time-consuming culture-based techniques. There is a strong need for methods to detect fecal contamination rapidly in distributed drinking water to prevent outbreaks of waterborne disease and support water utilities to efficiently manage their operations like actions to repair or maintain distribution pipes, to minimize impact on consumers. This study describes the validation and application of a qualitative real time reverse transcription PCR (RT-PCR) method targeting 16S ribosomal RNA (rRNA) for rapid detection of E. coli in distributed drinking water. The RT-PCR assay targets 16S rRNA, a highly abundant RNA in viable cells, enabling robust detection at the required sensitivity of 1 CFU/100 ml. The validation was performed by comparing the RT-PCR method with the culture-based chromogenic reference method (CCA) using the protocol and criteria described in ISO 16,140-2:2016. The validation demonstrated that this RT-PCR method can be used to specifically detect E. coli in a broad range of drinking water samples with at least the same limit of detection as the culture method (Relative Limit Of Detection = 0.75, range 0.43-1.43). The inclusivity study showed that the RT-PCR method was able to detect a broad range of E. coli strains derived from different sources and geographic areas, including pathogenic serotype O157 strains that are not detected with the culture method. The exclusivity study determined that other bacterial genera are not detected with this RT-PCR. However, Escherichia fergusonii was detected and, based on "in silico" analysis, it is expected that also E. albertii and E. marmotae and Shigella species will be detectable using this RT-PCR. An interlaboratory study confirmed that the RT-PCR and culture method have comparable sensitivities when tested by different participants at different laboratories. The application of RT-PCR to confirm the hygienic quality of distributed drinking water after actions to repair or maintain distribution pipes was compared with the culture method on 8076 routine samples, analyzed by the drinking water laboratories in the Netherlands. This comparison study showed a 96.4 % agreement between RT-PCR and culture. In 3.3 % of the samples E. coli was detected with RT-PCR and not with the culture method and in 0.1 % of the samples E. coli was only detected by culture confirming either a higher sensitivity for RT-PCR or the detection of RNA from uncultivable cells. Finally, the application of RT-PCR was highlighted during a contamination event in Belgium where we demonstrate the potency of RT-PCR as a tool to rapidly monitor the spread of microbial contamination and to monitor the effect of measures to remove the contamination This is the first fully validated rapid nucleic based method for detection of E. coli in distributed drinking water. These results demonstrate that this RT-PCR method can be used as a rapid alternative to the culture method to monitor E. coli in distributed drinking water. However, it should be emphasized that nucleic acid based detection methods rely on highly different detection principles (detection of captured nucleic acids present in a sample) than culture base methods (presence of cells cultivable on a selective medium) resulting in occasional different analysis results. Varying treatment and disinfection steps (UV, chlorine, monochloramine, Ozone) or environmental factors (decay) can influence the results and cause differences between RT-PCR and culture methods.

2.
Risk Anal ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772724

ABSTRACT

The coronavirus disease 2019 pandemic highlighted the need for more rapid and routine application of modeling approaches such as quantitative microbial risk assessment (QMRA) for protecting public health. QMRA is a transdisciplinary science dedicated to understanding, predicting, and mitigating infectious disease risks. To better equip QMRA researchers to inform policy and public health management, an Advances in Research for QMRA workshop was held to synthesize a path forward for QMRA research. We summarize insights from 41 QMRA researchers and experts to clarify the role of QMRA in risk analysis by (1) identifying key research needs, (2) highlighting emerging applications of QMRA; and (3) describing data needs and key scientific efforts to improve the science of QMRA. Key identified research priorities included using molecular tools in QMRA, advancing dose-response methodology, addressing needed exposure assessments, harmonizing environmental monitoring for QMRA, unifying a divide between disease transmission and QMRA models, calibrating and/or validating QMRA models, modeling co-exposures and mixtures, and standardizing practices for incorporating variability and uncertainty throughout the source-to-outcome continuum. Cross-cutting needs identified were to: develop a community of research and practice, integrate QMRA with other scientific approaches, increase QMRA translation and impacts, build communication strategies, and encourage sustainable funding mechanisms. Ultimately, a vision for advancing the science of QMRA is outlined for informing national to global health assessments, controls, and policies.

3.
Int J Hyg Environ Health ; 259: 114360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555823

ABSTRACT

Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.


Subject(s)
Farms , High-Throughput Nucleotide Sequencing , Occupational Exposure , Wastewater , Animals , Swine , Wastewater/virology , Humans , Risk Assessment , Viruses/isolation & purification , Viruses/genetics , Environmental Monitoring/methods
4.
Water Res ; 252: 121186, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38340453

ABSTRACT

Short-term fecal pollution events are a major challenge for managing microbial safety at recreational waters. Long turn-over times of current laboratory methods for analyzing fecal indicator bacteria (FIB) delay water quality assessments. Data-driven models have been shown to be valuable approaches to enable fast water quality assessments. However, a major barrier towards the wider use of such models is the prevalent data scarcity at existing bathing waters, which questions the representativeness and thus usefulness of such datasets for model training. The present study explores the ability of five data-driven modelling approaches to predict short-term fecal pollution episodes at recreational bathing locations under data scarce situations and imbalanced datasets. The study explicitly focuses on the potential benefits of adopting an innovative modeling and risk-based assessment approach, based on state/cluster-based Bayesian updating of FIB distributions in relation to different hydrological states. The models are benchmarked against commonly applied supervised learning approaches, particularly linear regression, and random forests, as well as to a zero-model which closely resembles the current way of classifying bathing water quality in the European Union. For model-based clustering we apply a non-parametric Bayesian approach based on a Dirichlet Process Mixture Model. The study tests and demonstrates the proposed approaches at three river bathing locations in Germany, known to be influenced by short-term pollution events. At each river two modelling experiments ("longest dry period", "sequential model training") are performed to explore how the different modelling approaches react and adapt to scarce and uninformative training data, i.e., datasets that do not include event pollution information in terms of elevated FIB concentrations. We demonstrate that it is especially the proposed Bayesian approaches that are able to raise correct warnings in such situations (> 90 % true positive rate). The zero-model and random forest are shown to be unable to predict contamination episodes if pollution episodes are not present in the training data. Our research shows that the investigated Bayesian approaches reduce the risk of missed pollution events, thereby improving bathing water safety management. Additionally, the approaches provide a transparent solution for setting minimum data quality requirements under various conditions. The proposed approaches open the way for developing data-driven models for bathing water quality prediction against the reality that data scarcity is common problem at existing and prospective bathing waters.


Subject(s)
Rivers , Water Quality , Rivers/microbiology , Bayes Theorem , Environmental Monitoring/methods , Prospective Studies , Bacteria , Water Microbiology , Feces/microbiology , Bathing Beaches , Water Pollution
5.
Environ Int ; 185: 108538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422875

ABSTRACT

Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).


Subject(s)
Drinking Water , Sanitary Engineering , Water Supply , RNA, Ribosomal, 16S/genetics , Water Microbiology , Bacteria/genetics , Biofilms , Steel , Drinking Water/microbiology
6.
Sci Total Environ ; 901: 166181, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37572894

ABSTRACT

Agricultural aquifer storage recovery and transfer (ASTR) stores excess fresh water for later reuse in irrigation. Moreover, water quality improves because chemical pollutants and pathogens will be removed by degradation and attachment to the aquifer material. The source water may contain the bacterial plant pathogen Ralstonia solanacearum which causes plant infections and high yield losses. We used quantitative microbial risk assessment (QMRA) to investigate the removal of R. solanacearum during ASTR to predict infection risks of potato plants after irrigation with the recovered water. Laboratory experiments analyzed the ASTR treatment by investigating the bacterial die-off in the water phase and the removal by attachment to the aquifer sediment. Die-off in the water phase depends on the residence time and ranged between 1.3 and 2.7 log10 after 10 or 60 days water storage, respectively. A subpopulation of the bacteria persisted for a prolonged time at low concentrations which may pose a risk if the water is recovered too early. However, the natural aquifer sand filtration proofed to be highly effective in removing R. solanacearum by attachment which depends on the distance between injection and abstraction well. The high removal by attachment alone (18 log10 after 1 m) would reduce bacterial concentrations to negligible numbers. Upscaling to longer soil passages is discussed in the paper. Infection risks of potato plants were calculated using a dose-response model and ASTR treatment resulted in negligible infection risks of a single plant, but also when simulating the irrigation of a 5 ha potato field. This is the first QMRA that analyzed an agricultural ASTR and the fate of a plant pathogen focusing on plant health. QMRA is a useful (water) management tool to evaluate the treatment steps of water reclamation technologies with the aim to provide safe irrigation water and reduce risks disseminating plant diseases.

7.
Sci Total Environ ; 903: 166540, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37634730

ABSTRACT

Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.

8.
FEMS Microbes ; 4: xtad003, 2023.
Article in English | MEDLINE | ID: mdl-37333436

ABSTRACT

A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.

9.
Water Res ; 241: 120143, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37276656

ABSTRACT

Biofilm detachment contributes to water quality deterioration. However, the contributions of biofilm detachment from different pipes have not been quantified or compared. Following the introduction of partial reverse osmosis (RO) in drinking water production, this study analyzed particles at customers' ends and tracked their origins to water distribution mains and service lines. For doing so, filter bags were installed in front of water meters to capture upstream detached particles, while biofilm from water main and service line were sampled by cutting pipe specimens. The results showed that elemental concentrations of the biofilm in mains were higher than those of service lines (54.3-268.5 vs. 27.1-44.4 µg/cm2), both dominated by Ca. Differently, filter bags were dominated by Fe/Mn (77.5-98.1%). After introducing RO, Ca significantly decreased in biofilms of mains but not service lines, but the released Fe/Mn rather than Ca arrived at customers' ends. The ATP concentrations of service lines were higher than mains, which decreased on mains but increased in service lines after introducing RO. For the core ASVs, 13/24 were shared by service lines (17), mains (21), and filter bags (17), which were assigned mainly to Nitrospira spp., Methylomagnum spp., Methylocytis spp., and IheB2-23 spp. According to source tracking results, service lines contributed more than mains to the particulate material collected by filter bags (57.6 ± 13.2% vs. 13.0 ± 11.6%). To the best of our knowledge, the present study provides the first evidence of service lines' direct and quantitative contributions to potential water quality deterioration at customers' ends. This highlights the need for the appropriate management of long-neglected service line pipes, e.g., regarding material selection, length optimization, and proper regulation.


Subject(s)
Drinking Water , Water Quality , Water Supply , Water Microbiology , Bacteria , Biofilms
10.
Water Res ; 241: 120149, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37270942

ABSTRACT

Premise plumbing plays an essential role in determining the final quality of drinking water consumed by customers. However, little is known about the influences of plumbing configuration on water quality changes. This study selected parallel premise plumbing in the same building with different configurations, i.e., laboratory and toilet plumbing. Water quality deteriorations induced by premise plumbing under regular and interrupted water supply were investigated. The results showed that most of the water quality parameters did not vary under regular supply, except Zn, which was significantly increased by laboratory plumbing (78.2 to 260.7 µg/l). For the bacterial community, the Chao1 index was significantly increased by both plumbing types to a similar level (52 to 104). Laboratory plumbing significantly changed the bacterial community, but toilet plumbing did not. Remarkably, water supply interruption/restoration led to serious water quality deterioration in both plumbing types but resulted in different changes. Physiochemically, discoloration was observed only in laboratory plumbing, along with sharp increases in Mn and Zn. Microbiologically, the increase in ATP was sharper in toilet plumbing than in laboratory plumbing. Some opportunistic pathogen-containing genera, e.g., Legionella spp. and Pseudomonas spp., were present in both plumbing types but only in disturbed samples. This study highlighted the esthetic, chemical, and microbiological risks associated with premise plumbing, for which system configuration plays an important role. Attention should be given to optimizing premise plumbing design for managing building water quality.


Subject(s)
Sanitary Engineering , Water Quality , Water Microbiology , Water Supply , Pseudomonas
11.
Sci Total Environ ; 883: 163599, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37100150

ABSTRACT

Despite high vaccination rates in the Netherlands, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate. Longitudinal sewage surveillance was implemented along with the notification of cases as two parts of the surveillance pyramid to validate the use of sewage for surveillance, as an early warning tool, and to measure the effect of interventions. Sewage samples were collected from nine neighborhoods between September 2020 and November 2021. Comparative analysis and modeling were performed to understand the correlation between wastewater and case trends. Using high resolution sampling, normalization of wastewater SARS-CoV-2 concentrations, and 'normalization' of reported positive tests for testing delay and intensity, the incidence of reported positive tests could be modeled based on sewage data, and trends in both surveillance systems coincided. The high collinearity implied that high levels of viral shedding around the onset of disease largely determined SARS-CoV-2 levels in wastewater, and that the observed relationship was independent of variants of concern and vaccination levels. Sewage surveillance alongside a large-scale testing effort where 58 % of a municipality was tested, indicated a five-fold difference in the number of SARS-CoV-2-positive individuals and reported cases through standard testing. Where trends in reported positive cases were biased due to testing delay and testing behavior, wastewater surveillance can objectively display SARS-CoV-2 dynamics for both small and large locations and is sensitive enough to measure small variations in the number of infected individuals within or between neighborhoods. With the transition to a post-acute phase of the pandemic, sewage surveillance can help to keep track of re-emergence, but continued validation studies are needed to assess the predictive value of sewage surveillance with new variants. Our findings and model aid in interpreting SARS-CoV-2 surveillance data for public health decision-making and show its potential as one of the pillars of future surveillance of (re)emerging viruses.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , Sewage
12.
Sci Total Environ ; 882: 163614, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37086991

ABSTRACT

Natural organic matter (NOM) is present in water matrix that serves as a drinking water source. This study examined the effect of low and high NOM concentrations on inactivation kinetics of a model RNA virus (MS2) and a model DNA virus (PhiX 174) by copper (Cu2+) and/or silver (Ag+) ions. Cu and Ag are increasingly applied in household water treatment (HHWT) systems. However, the impact of NOM on their inactivation kinetics remains elusive despite its importance for their application. The presence of NOM in water led to faster virus inactivation by Cu2+ but slower by Ag+. The fastest inactivation kinetics of MS2 (Kobs = 4.8 h-1) were observed by Cu in water containing high NOM (20 mg C/L). Meanwhile, for PhiX 174, the fastest inactivation kinetics (av. Kobs = 3.5 h-1) were observed by Cu and Ag synergism in water containing high NOM. Altogether, it can be concluded that the combination of Cu and Ag is promising as a virus disinfectant in treatment options allowing for multiple hours of residence time such as safe water storage tanks.


Subject(s)
Copper , Water Purification , Silver , Virus Inactivation , Ions
13.
Sci Total Environ ; 873: 162209, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796689

ABSTRACT

Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2/genetics , Sewage , COVID-19/epidemiology
14.
Viruses ; 15(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36680246

ABSTRACT

Multiple lineages of SARS-CoV-2 have been identified featuring distinct sets of genetic changes that confer to the virus higher transmissibility and ability to evade existing immunity. The continuous evolution of SARS-CoV-2 may pose challenges for current treatment options and diagnostic tools. In this study, we have first evaluated the performance of the 14 WHO-recommended real-time reverse transcription (RT)-PCR assays currently in use for the detection of SARS-CoV-2 and found that only one assay has reduced performance against Omicron. We then developed a new duplex real-time RT-PCR assay based on the amplification of two ultra-conserved elements present within the SARS-CoV-2 genome. The new duplex assay successfully detects all of the tested SARS-CoV-2 variants of concern (including Omicron sub-lineages BA.4 and BA.5) from both clinical and wastewater samples with high sensitivity and specificity. The assay also functions as a one-step droplet digital RT-PCR assay. This new assay, in addition to clinical testing, could be adopted in surveillance programs for the routine monitoring of SARS-CoV-2's presence in a population in wastewater samples. Positive results with our assay in conjunction with negative results from an Omicron-specific assay may provide timely indication of the emergence of a novel SARS-CoV-2 variant in a certain community and thereby aid public health interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Wastewater , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction , COVID-19 Testing
15.
Sci Total Environ ; 865: 161196, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36581271

ABSTRACT

Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.


Subject(s)
COVID-19 , Wastewater , Humans , Sewage/analysis , SARS-CoV-2 , RNA, Viral , Water Pollution/analysis , Environmental Monitoring , Feces/chemistry , Water Microbiology , COVID-19/epidemiology
16.
Sci Total Environ ; 858(Pt 1): 159748, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36306840

ABSTRACT

Wastewater-based epidemiology (WBE) has gained increasing attention as a complementary tool to conventional surveillance methods with potential for significant resource and labour savings when used for public health monitoring. Using WBE datasets to train machine learning algorithms and develop predictive models may also facilitate early warnings for the spread of outbreaks. The challenges associated with using machine learning for the analysis of WBE datasets and timeseries forecasting of COVID-19 were explored by running Random Forest (RF) algorithms on WBE datasets across 108 sites in five regions: Scotland, Catalonia, Ohio, the Netherlands, and Switzerland. This method uses measurements of SARS-CoV-2 RNA fragment concentration in samples taken at the inlets of wastewater treatment plants, providing insight into the prevalence of infection in upstream wastewater catchment populations. RF's forecasting performance at each site was quantitatively evaluated by determining mean absolute percentage error (MAPE) values, which was used to highlight challenges affecting future implementations of RF for WBE forecasting efforts. Performance was generally poor using WBE datasets from Catalonia, Scotland, and Ohio with 'reasonable' or better forecasts constituting 0 %, 5 %, and 0 % of these regions' forecasts, respectively. RF's performance was much stronger with WBE data from the Netherlands and Switzerland, which provided 55 % and 45 % 'reasonable' or better forecasts respectively. Sampling frequency and training set size were identified as key factors contributing to accuracy, while inclusion of too many unnecessary variables (or e.g., flow data) was identified as a contributing factor to poor performance. The contribution of catchment population on forecast accuracy was more ambiguous. This study determined that the factors governing RF's forecast performance are complicated and interrelated, which presents challenges for further work in this space. A sufficiently accurate further iteration of the tool discussed within this study would provide significant but varying value for public health departments for monitoring future, or ongoing outbreaks, assisting the implementation of on-time health response measures.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Wastewater , COVID-19/epidemiology , Time Factors , RNA, Viral , SARS-CoV-2 , Machine Learning , Forecasting
17.
J Water Health ; 20(2): iii-vi, 2022 02.
Article in English | MEDLINE | ID: mdl-36366985

Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Water
18.
PLoS One ; 17(10): e0276696, 2022.
Article in English | MEDLINE | ID: mdl-36301829

ABSTRACT

An outbreak of SARS-CoV-2 Alpha variant (Pango lineage B.1.1.7) was detected at a primary school (School X) in Lansingerland, the Netherlands, in December 2020. The outbreak was studied retrospectively, and population-based screening was used to assess the extent of virus circulation and decelerate transmission. Cases were SARS-CoV-2 laboratory confirmed and were residents of Lansingerland (November 16th 2020 until February 22th 2021), or had an epidemiological link with School X or neighbouring schools. The SARS-CoV-2 variant was determined using variant PCR or whole genome sequencing. A questionnaire primarily assessed clinical symptoms. A total of 77 Alpha variant cases were found with an epidemiological link to School X, 16 Alpha variant cases linked to the neighbouring schools, and 146 Alpha variant cases among residents of Lansingerland without a link to the schools. The mean number of self-reported symptoms was not significantly different among Alpha variant infected individuals compared to non-Alpha infected individuals. The secondary attack rate (SAR) among Alpha variant exposed individuals in households was 52% higher compared to non-Alpha variant exposed individuals (p = 0.010), with the mean household age, and mean number of children and adults per household as confounders. Sequence analysis of 60 Alpha variant sequences obtained from cases confirmed virus transmission between School X and neighbouring schools, and showed that multiple introductions of the Alpha variant had already taken place in Lansingerland at the time of the study. The alpha variant caused a large outbreak at both locations of School X, and subsequently spread to neighbouring schools, and households. Population-based screening (together with other public health measures) nearly stopped transmission of the outbreak strain, but did not prevent variant replacement in the Lansingerland municipality.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Netherlands/epidemiology , Retrospective Studies , SARS-CoV-2/genetics , Schools
19.
Water Res ; 224: 119079, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36108400

ABSTRACT

Norovirus infections are among the major causes of acute gastroenteritis worldwide. In Germany, norovirus infections are the most frequently reported cause of gastroenteritis, although only laboratory confirmed cases are officially counted. The high infectivity and environmental persistence of norovirus, makes the virus a relevant pathogen for water related infections. In the 2017 guidelines for potable water reuse, the World Health Organization proposes Norovirus as a reference pathogen for viral pathogens for quantitative microbial risk assessment (QMRA). A challenge for QMRA is, that norovirus data are rarely available over long monitoring periods to assess inter-annual variability of the associated health risk, raising the question about the relevance of this source of variability regarding potential risk management alternatives. Moreover, norovirus infections show high prevalence during winter and early spring and lower incidence during summer. Therefore, our objective is to derive risk scenarios for assessing the potential relevance of the within and between year variability of norovirus concentrations in municipal wastewater for the assessment of health risks of fieldworkers, if treated wastewater is used for irrigation in agriculture. To this end, we use the correlation between norovirus influent concentration and reported epidemiological incidence (R²=0.93), found at a large city in Germany. Risk scenarios are subsequently derived from long-term reported epidemiological data, by applying a Bayesian regression approach. For assessing the practical relevance for wastewater reuse we apply the risk scenarios to different irrigation patterns under various treatment options, namely "status-quo" and "irrigation on demand". While status-quo refers to an almost all-year irrigation, the latter assumes that irrigation only takes place during the vegetation period from May - September. Our results indicate that the log-difference of infection risks between scenarios may vary between 0.8 and 1.7 log given the same level of pre-treatment. They also indicate that under the same exposure scenario the between-year variability of norovirus infection risk may be > 1log, which makes it a relevant factor to consider in future QMRA studies and studies which aim at evaluating safe water reuse applications. The predictive power and wider use of epidemiological data as a suitable predictor variable should be further validated with paired multi-year data.


Subject(s)
Caliciviridae Infections , Drinking Water , Gastroenteritis , Norovirus , Agricultural Irrigation , Agriculture , Bayes Theorem , Caliciviridae Infections/epidemiology , Gastroenteritis/epidemiology , Humans , Risk Assessment/methods , Seasons , Wastewater
20.
Int J Hyg Environ Health ; 245: 114018, 2022 08.
Article in English | MEDLINE | ID: mdl-35985219

ABSTRACT

Health risk assessment of environmental exposure to pathogens requires complete and up to date knowledge. With the rapid growth of scientific publications and the protocolization of literature reviews, an automated approach based on Artificial Intelligence (AI) techniques could help extract meaningful information from the literature and make literature reviews more efficient. The objective of this research was to determine whether it is feasible to extract both qualitative and quantitative information from scientific publications about the waterborne pathogen Legionella on PubMed, using Deep Learning and Natural Language Processing techniques. The model effectively extracted the qualitative and quantitative characteristics with high precision, recall and F-score of 0.91, 0.80, and 0.85 respectively. The AI extraction yielded results that were comparable to manual information extraction. Overall, AI could reliably extract both qualitative and quantitative information about Legionella from scientific literature. Our study paved the way for a better understanding of the information extraction processes and is a first step towards harnessing AI to collect meaningful information on pathogen characteristics from environmental microbiology publications.


Subject(s)
Artificial Intelligence
SELECTION OF CITATIONS
SEARCH DETAIL
...