Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Rep Prog Phys ; 86(12)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37871599

ABSTRACT

We review the methodology to theoretically treat parity-time- (PT-) symmetric, non-Hermitian quantum many-body systems. They are realized as open quantum systems withPTsymmetry and couplings to the environment which are compatible.PT-symmetric non-Hermitian quantum systems show a variety of fascinating properties which single them out among generic open systems. The study of the latter has a long history in quantum theory. These studies are based on the Hermiticity of the combined system-reservoir setup and were developed by the atomic, molecular, and optical physics as well as the condensed matter physics communities. The interest of the mathematical physics community inPT-symmetric, non-Hermitian systems led to a new perspective and the development of the elegant mathematical formalisms ofPT-symmetric and biorthogonal quantum mechanics, which do not make any reference to the environment. In the mathematical physics research, the focus is mainly on the remarkable spectral properties of the Hamiltonians and the characteristics of the corresponding single-particle eigenstates. Despite being non-Hermitian, the Hamiltonians can show parameter regimes, in which all eigenvalues are real. To investigate emergent quantum many-body phenomena in condensed matter physics and to make contact to experiments one, however, needs to study expectation values of observables and correlation functions. One furthermore, has to investigate statistical ensembles and not only eigenstates. The adoption of the concepts ofPT-symmetric and biorthogonal quantum mechanics by parts of the condensed matter community led to a controversial status of the methodology. There is no consensus on fundamental issues, such as, what a proper observable is, how expectation values are supposed to be computed, and what adequate equilibrium statistical ensembles and their corresponding density matrices are. With the technological progress in engineering and controlling open quantum many-body systems it is high time to reconcile the Hermitian with thePT-symmetric and biorthogonal perspectives. We comprehensively review the different approaches, including the overreaching idea of pseudo-Hermiticity. To motivate the Hermitian perspective, which we propagate here, we mainly focus on the ancilla approach. It allows to embed a non-Hermitian system into a larger, Hermitian one. In contrast to other techniques, e.g. master equations, it does not rely on any approximations. We discuss the peculiarities ofPT-symmetric and biorthogonal quantum mechanics. In these, what is considered to be an observable depends on the Hamiltonian or the selected (biorthonormal) basis. Crucially in addition, what is denoted as an 'expectation value' lacks a direct probabilistic interpretation, and what is viewed as the canonical density matrix is non-stationary and non-Hermitian. Furthermore, the non-unitarity of the time evolution is hidden within the formalism. We pick up several model Hamiltonians, which so far were either investigated from the Hermitian perspective or from thePT-symmetric and biorthogonal one, and study them within the respective alternative framework. This includes a simple two-level, single-particle problem but also a many-body lattice model showing quantum critical behavior. Comparing the outcome of the two types of computations shows that the Hermitian approach, which, admittedly, is in parts clumsy, always leads to results which are physically sensible. In the rare cases, in which a comparison to experimental data is possible, they furthermore agree to these. In contrast, the mathematically elegantPT-symmetric and biorthogonal approaches lead to results which, are partly difficult to interpret physically. We thus conclude that the Hermitian methodology should be employed. However, to fully appreciate the physics ofPT-symmetric, non-Hermitian quantum many-body systems, it is also important to be aware of the main concepts ofPT-symmetric and biorthogonal quantum mechanics. Our conclusion has far reaching consequences for the application of Green function methods, functional integrals, and generating functionals, which are at the heart of a large number of many-body methods. They cannot be transferred in their established forms to treatPT-symmetric, non-Hermitian quantum systems. It can be considered as an irony of fate that these methods are available only within the mathematical formalisms ofPT-symmetric and biorthogonal quantum mechanics.

2.
J Phys Condens Matter ; 31(16): 163001, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30630142

ABSTRACT

Recent progress in nanoscale manufacturing has allowed to experimentally investigate quantum dots coupled to two superconducting leads in controlled and tunable setups. The equilibrium Josephson current was measured in on-chip superconducting quantum interference devices, and subgap states were investigated using weakly coupled metallic leads for spectroscopy. This has reinstated two 'classic' problems on the agenda of theoretical condensed matter physics: (1) the Josephson effect and (2) quantum spins in superconductors. The relevance of the former is obvious as the barrier, which separates the two superconductors in a standard Josephson junction, is merely replaced by the quantum dot with well separated energy levels. For odd filling of the dot it acts as a quantum mechanical spin-1/2 and thereby the relevance of the latter becomes apparent also. For normal conducting leads and at odd dot filling the Kondo effect strongly modifies the transport properties as can, e.g. be studied within the Anderson model. One can expect the same for superconducting leads, and in certain parameter regimes remnants of Kondo physics, i.e. strong electronic correlations, will affect the Josephson current. In this topical review, we discuss the status of the theoretical understanding of the Anderson-Josephson quantum dot in equilibrium, mainly focusing on the Josephson current. We introduce a minimal model consisting of a dot which can only host a single spin-up and a single spin-down electron repelling each other by a local Coulomb interaction. The dot is tunnel-coupled to two superconducting leads as described by the Bardeen-Cooper-Schrieffer Hamiltonian. This model was investigated using a variety of methods, some capturing aspects of Kondo physics, while others failing in this respect. We briefly review this. The model shows a first order level-crossing quantum phase transition when varying any parameter, provided that the others are within appropriate ranges. At vanishing temperature it leads to a jump of the Josephson current. To study the qualitative behavior of the phase diagram, or the Josephson current, several of the methods can be used. However, for a quantitative description, elaborate quantum many-body methods must be employed. We show that a quantitative agreement between accurate results obtained for the simple model and measurements of the current can be reached. This confirms that the experiments reveal the finite temperature signatures of the zero temperature transition. In addition, we consider two examples of more complex dot geometries, which might be experimentally realized in the near future. The first is characterized by the interplay of the above level-crossing physics and the Fano effect, and the second by the interplay of superconductivity and almost degenerate singlet and triplet two-body states.

3.
Phys Rev Lett ; 116(2): 026801, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26824557

ABSTRACT

We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump.

4.
Phys Rev Lett ; 113(11): 116401, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25259989

ABSTRACT

We show that the single-particle spectral properties of gapless one-dimensional Fermi systems in the Luttinger liquid state reached at intermediate times after an abrupt quench of the two-particle interaction are highly indicative of the unusual nonequilibrium nature of this state. The line shapes of the momentum-integrated and -resolved spectral functions strongly differ from their ground state as well as finite temperature equilibrium counterparts. Using an energy resolution improved version of radio-frequency spectroscopy of quasi-one-dimensional cold Fermi gases, it should be possible to experimentally identify this nonequilibrium state by its pronounced spectral signatures.

5.
Phys Rev Lett ; 110(10): 100405, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23521236

ABSTRACT

The nonequilibrium dynamics of a small quantum system coupled to a dissipative environment is studied. We show that (i) the oscillatory dynamics close to a coherent-to-incoherent transition is significantly different from the one of the classical damped harmonic oscillator and that (ii) non-Markovian memory plays a prominent role in the time evolution after a quantum quench.

6.
J Phys Condens Matter ; 25(1): 014003, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23221026

ABSTRACT

Motivated by recent scanning tunneling and photoemission spectroscopy measurements on self-organized gold chains on a germanium surface, we reinvestigate the local single-particle spectral properties of Luttinger liquids. In the first part we use the bosonization approach to exactly compute the local spectral function of a simplified field theoretical low-energy model and take a closer look at scaling properties as a function of the ratio of energy and temperature. Translational-invariant Luttinger liquids as well as those with an open boundary (cut chain geometry) are considered. We explicitly show that the scaling functions of both set-ups have the same analytical form. The scaling behavior suggests a variety of consistency checks which can be performed on measured data to experimentally verify Luttinger liquid behavior. In the second part we approximately compute the local spectral function of a microscopic lattice model-the extended Hubbard model-close to an open boundary using the functional renormalization group. We show that it follows the field theoretical prediction in the low-energy regime as a function of energy and temperature, and point out the importance of nonuniversal energy scales inherent to any microscopic model. The spatial dependence of this spectral function is characterized by oscillatory behavior and an envelope function which follows a power law in accordance with the field theoretical continuum model. Interestingly, for the lattice model we find a phase shift which is proportional to the two-particle interaction and not accounted for in the standard bosonization approach to Luttinger liquids with an open boundary. We briefly comment on the effects of several one-dimensional branches cutting the Fermi energy and Rashba spin-orbit interaction.


Subject(s)
Energy Transfer , Models, Chemical , Rheology/methods , Solutions/chemistry , Computer Simulation
7.
Phys Rev Lett ; 108(22): 227001, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-23003641

ABSTRACT

We study the Josephson current 0-π transition of a quantum dot tuned to the Kondo regime. The physics can be quantitatively captured by the numerically exact continuous time quantum Monte Carlo method applied to the single-impurity Anderson model with Bardeen-Cooper-Schrieffer superconducting leads. For a comparison to an experiment, the tunnel couplings are determined by fitting the normal-state linear conductance. Excellent agreement for the dependence of the critical Josephson current on the level energy is achieved. For increased tunnel couplings the Kondo scale becomes comparable to the superconducting gap, and the regime of the strongest competition between superconductivity and Kondo correlations is reached; we predict the gate voltage dependence of the critical current in this regime.

8.
Phys Rev Lett ; 109(12): 126406, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005968

ABSTRACT

We provide evidence that the relaxation dynamics of one-dimensional, metallic Fermi systems resulting out of an abrupt amplitude change of the two-particle interaction has aspects which are universal in the Luttinger liquid sense: the leading long-time behavior of certain observables is described by universal functions of the equilibrium Luttinger liquid parameter and the renormalized velocity. We analytically derive those functions for the Tomonaga-Luttinger model and verify our hypothesis of universality by considering spinless lattice fermions within the framework of the density-matrix renormalization group.

9.
Phys Rev Lett ; 108(17): 176802, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22680891

ABSTRACT

By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.

10.
Phys Rev Lett ; 106(15): 156805, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21568596

ABSTRACT

Using low-temperature scanning tunneling spectroscopy applied to the Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe electron-electron interaction effects in the quantum Hall regime. The 2DES is decoupled from bulk states and exhibits spreading resistance within the insulating quantum Hall phases. In quantitative agreement with calculations we find an exchange enhancement of the spin splitting. Moreover, we observe that both the spatially averaged as well as the local density of states feature a characteristic Coulomb gap at the Fermi level. These results show that electron-electron interaction can be probed down to a resolution below all relevant length scales.

11.
Nanotechnology ; 21(27): 272001, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20571187

ABSTRACT

We review recent progress in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots and quantum wires. Various physical phenomena are addressed, relating to cotunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, non-equilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.

12.
Phys Rev Lett ; 102(13): 136805, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19392388

ABSTRACT

Understanding the charging of exceptionally narrow levels in quantum dots in the presence of interactions remains a challenge within mesoscopic physics. We address this fundamental question in the generic model of a narrow level capacitively coupled to a broad one. Using bosonization we show that for arbitrary capacitive coupling charging can be described by an analogy to the magnetization in the anisotropic Kondo model, featuring a low-energy crossover scale that depends in a power-law fashion on the tunneling amplitude to the level. Explicit analytical expressions for the exponent are derived and confirmed by detailed numerical and functional renormalization-group calculations.

13.
J Phys Condens Matter ; 21(21): 215608, 2009 May 27.
Article in English | MEDLINE | ID: mdl-21825557

ABSTRACT

We study electronic transport through a one-dimensional, finite-length quantum wire of correlated electrons (Luttinger liquid) coupled at arbitrary position via tunnel barriers to two semi-infinite, one-dimensional as well as stripe-like (two-dimensional) leads, thereby bringing theory closer towards systems resembling set-ups realized in experiments. In particular, we compute the temperature dependence of the linear conductance G of a system without bulk impurities on the temperature T. The appearance of new temperature scales introduced by the lengths of overhanging parts of the leads and the wire implies a G(T) which is much more complex than the power-law behavior described so far for end-coupled wires. Depending on the precise set-up the wide temperature regime of power-law scaling found in the end-coupled case is broken up into up to five fairly narrow regimes interrupted by extended crossover regions. Our results can be used to optimize the experimental set-ups designed for a verification of Luttinger liquid power-law scaling.

14.
Phys Rev Lett ; 98(18): 186802, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17501592

ABSTRACT

Transmission phase alpha measurements of many-electron quantum dots (small mean level spacing delta) revealed universal phase lapses by pi between consecutive resonances. In contrast, for dots with only a few electrons (large delta), the appearance or not of a phase lapse depends on the dot parameters. We show that a model of a multilevel quantum dot with local Coulomb interactions and arbitrary level-lead couplings reproduces the generic features of the observed behavior. The universal behavior of alpha for small delta follows from Fano-type antiresonances of the renormalized single-particle levels.

15.
Phys Rev Lett ; 96(14): 146801, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16712106

ABSTRACT

We investigate the effect of local electron correlations on transport through parallel quantum dots. The linear conductance as a function of gate voltage is strongly affected by the interplay of the interaction U and quantum interference. We find a pair of novel correlation-induced resonances separated by an energy scale that depends exponentially on U. The effect is robust against a small detuning of the dot energy levels and occurs for arbitrary generic tunnel couplings. It should be observable in experiments on the basis of presently existing double-dot setups.

16.
Phys Rev Lett ; 94(13): 136405, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15904011

ABSTRACT

We investigate the transport of correlated fermions through a junction of three one-dimensional quantum wires pierced by a magnetic flux. We determine the flow of the conductance as a function of a low-energy cutoff in the entire parameter space. For attractive interactions and generic flux the fixed point with maximal asymmetry of the conductance is the stable one, as conjectured recently. For repulsive interactions and arbitrary flux we find a line of stable fixed points with vanishing conductance as well as stable fixed points with symmetric conductance (4/9)(e(2)/h).

17.
Phys Rev Lett ; 85(24): 5254, 2000 Dec 11.
Article in English | MEDLINE | ID: mdl-11102236
19.
Phys Rev Lett ; 74(15): 2997-3000, 1995 Apr 10.
Article in English | MEDLINE | ID: mdl-10058077
SELECTION OF CITATIONS
SEARCH DETAIL
...