Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212845

ABSTRACT

Conventional kiln drying of wood operates by the evaporation of water at elevated temperature. In the initial stage of drying, mobile water in the wood cell lumen evaporates. More slowly, water bound in the wood cell walls evaporates, requiring the breaking of hydrogen bonds between water molecules and cellulose and hemicellulose polymers in the cell wall. An alternative for wood kiln drying is a patented process for green wood dewatering through the molecular interaction of supercritical carbon dioxide with water of wood cell sap. When the system pressure is reduced to below the critical point, phase change from supercritical fluid to gas occurs with a consequent large change in CO2 volume. This results in the efficient, rapid, mechanical expulsion of liquid sap from wood. The end-point of this cyclical phase-change process is wood dewatered to the cell wall fibre saturation point. This paper describes dewatering over a range of green wood specimen sizes, from laboratory physical chemistry studies to pilot-plant trials. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were applied to study the fundamental mechanisms of the process, which were contrasted with similar studies of conventional thermal wood drying. In conclusion, opportunities and impediments towards the commercialisation of the green wood dewatering process are discussed.


Subject(s)
Carbon Dioxide/chemistry , Water/chemistry , Wood/chemistry , Pinus/chemistry , Proton Magnetic Resonance Spectroscopy
2.
Anal Bioanal Chem ; 409(3): 763-771, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27915369

ABSTRACT

The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against 13C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R 2(cal) value of 0.973, and R 2(CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.

3.
New Phytol ; 195(3): 596-608, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22680066

ABSTRACT

Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130-160 individuals), 'validating' our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.


Subject(s)
Cellulose/chemistry , Myrtaceae/chemistry , Myrtaceae/genetics , Polymorphism, Single Nucleotide , Wood/growth & development , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Alleles , Cellulose/genetics , Genes, Plant , Genetic Association Studies , Linkage Disequilibrium , Myrtaceae/growth & development , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phenotype , Photosynthesis , Plant Proteins/chemistry , Plant Proteins/genetics , Wood/chemistry , Wood/genetics
4.
Genetics ; 183(3): 1153-64, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19737751

ABSTRACT

Populations with low linkage disequilibrium (LD) offer unique opportunities to study functional variants influencing quantitative traits. We exploited the low LD in forest trees to identify functional polymorphisms in a Eucalyptus nitens COBRA-like gene (EniCOBL4A), whose Arabidopsis homolog has been implicated in cellulose deposition. Linkage analysis in a full-sib family revealed that EniCOBL4A is the most strongly associated marker in a quantitative trait locus (QTL) region for cellulose content. Analysis of LD by genotyping 11 common single-nucleotide polymorphisms (SNPs) and a simple sequence repeat (SSR) in an association population revealed that LD declines within the length of the gene. Using association studies we fine mapped the effect of the gene to SNP7, a synonymous SNP in exon 5, which occurs between two small haplotype blocks. We observed patterns of allelic expression imbalance (AEI) and differential binding of nuclear proteins to the SNP7 region that indicate that SNP7 is a cis-acting regulatory polymorphism affecting allelic expression. We also observed AEI in SNP7 heterozygotes in a full-sib family that is linked to heritable allele-specific methylation near SNP7. This study demonstrates the potential to reveal functional polymorphisms underlying quantitative traits in low LD populations.


Subject(s)
Cellulose/metabolism , Eucalyptus/genetics , Plant Proteins/genetics , Polymorphism, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Allelic Imbalance , Chromosome Mapping , Chromosomes, Plant/genetics , CpG Islands/genetics , DNA Methylation , Eucalyptus/metabolism , Gene Expression Profiling , Gene Frequency , Genotype , Haplotypes , Linkage Disequilibrium , Microsatellite Repeats/genetics , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...