Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Muscle Nerve ; 65(2): 247-255, 2022 02.
Article in English | MEDLINE | ID: mdl-34738250

ABSTRACT

INTRODUCTION/AIMS: While the peripheral nervous system has the inherent ability to recover following injury, results are often unsatisfactory, resulting in permanent functional deficits and disability. Therefore, methods that enhance regeneration are of significant interest. The present study investigates an injectable nerve-tissue-specific hydrogel as a biomaterial for nerve regeneration in a rat nerve crush model. METHODS: Nerve-specific hydrogels were injected into the subepineurial space in both uninjured and crushed sciatic nerves of rats to assess safety and efficacy, respectively. The animals were followed longitudinally for 12 wk using sciatic functional index and kinematic measures. At 12 wk, electrophysiologic examination was also performed, followed by nerve and muscle histologic assessment. RESULTS: When the hydrogel was injected into an uninjured nerve, no differences in sciatic functional index, kinematic function, or axon counts were observed. A slight reduction in muscle fiber diameter was observed in the hydrogel-injected animals, but overall muscle area and kinematic function were not affected. Hydrogel injection following nerve crush injury resulted in multiple modest improvements in sciatic functional index and kinematic function with an earlier return to normal function observed in the hydrogel treated animals as compared to untreated controls. While no improvements in supramaximal compound motor action potential were observed in hydrogel treated animals, increased axon counts were observed on histologic assessment. DISCUSSION: These improvements in functional and histologic outcomes in a rapidly and fully recovering model suggest that injection of a nerve-specific hydrogel is safe and has the potential to improve outcomes following nerve injury.


Subject(s)
Crush Injuries , Hydrogels , Animals , Crush Injuries/pathology , Nerve Crush , Nerve Regeneration/physiology , Rats , Rodentia , Sciatic Nerve/injuries
2.
Methods ; 171: 41-61, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31398392

ABSTRACT

A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.


Subject(s)
Extracellular Matrix/transplantation , Nervous System/growth & development , Regenerative Medicine/trends , Tissue Engineering , Animals , Extracellular Matrix/chemistry , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Nervous System/drug effects , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...