Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 341(6): 776-81, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16473342

ABSTRACT

2,5-Anhydro-3,4-di-O-benzyl-D-mannitol was glycosylated using different donors such as tetra-O-acetyl-alpha-D-glucopyranosyl bromide in the presence of Hg(CN)(2), the corresponding beta-thiophenylglycoside in the presence of NIS and TfOH as well as the alpha- and beta-trichloroimidate with TMSOTf as promoter. The resulting mixtures were analyzed by HPLC and the following main components were isolated and characterized: 2,5-anhydro-3,4-di-O-benzyl-1-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-d-mannitol; 6-O-acetyl-2,5-anhydro-3,4-di-O-benzyl-1-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol; 2,5-anhydro-3,4-di-O-benzyl-1,6-bis-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol; 2,5-anhydro-3,4-di-O-benzyl-1-O-[-2-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-3,4,6-tri-O-acetyl-beta-D-glucopyranosyl]-6-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol and 2,5-anhydro-3,4-di-O-benzyl-1,6-bis-O-(3,4,6-tri-O-acetyl-1,2-O-ethylidene-2'-yl-alpha-D-glucopyranosyl)-D-mannitol. The latter compound representing a bis-orthoester might be a common intermediate in all the investigated reactions, as its rearrangement and/or decomposition can yield all of the isolated compounds.


Subject(s)
Glycosides/chemistry , Glycosides/metabolism , Mannitol/analogs & derivatives , Glycosylation , Magnetic Resonance Spectroscopy , Mannitol/chemistry , Mannitol/metabolism , Molecular Structure
2.
Carbohydr Res ; 340(10): 1739-49, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-15953593

ABSTRACT

2,5-Anhydro-3-O-beta-D-glucopyranosyl-; -3-O-alpha-L-idopyranosyl-; -3-O-alpha-D-arabinopyranosyl-; -3-O-alpha-L-arabinopyranosyl-; -3-O-beta-D-maltopyranosyl-; -3-O-beta-D-gentiobiopyranosyl-; -1,6-di-O-beta-D-glucopyranosyl-; -1,6-di-O-alpha-L-idopyranosyl-; -1-O-beta-D-maltopyranosyl-; -1,3,6-tri-O-beta-D-glucopyranosyl-; -1,6-di-O-beta-maltopyranosyl- and -1,6-di-O-beta-D-gentiobiopyranosyl-2,5-anhydro-D-mannitol as well as their poly-O-sulfated derivatives were synthesized. The IP3-IC50 values of their sodium and/or potassium salts were determined for structure-activity studies aiming at the synthesis of new, orally active antiasthmatic compounds.


Subject(s)
Glycosides/chemistry , Glycosides/chemical synthesis , Mannitol/analogs & derivatives , Sulfates/chemistry , Mannitol/chemical synthesis , Mannitol/chemistry , Molecular Structure
3.
Carbohydr Res ; 339(14): 2407-14, 2004 Oct 04.
Article in English | MEDLINE | ID: mdl-15388355

ABSTRACT

Glycosidation of 1,2:5,6-di-O-isopropylidene-D-glucose with tetra-O-acetyl-glucosyl bromide in 1:1 benzene-MeNO2 afforded approximately equal amounts of the 3-O-beta-D-glycoside and the rearranged 6-O-beta-D-glycoside, while in MeCN only the latter was formed. When tetra-O-acetyl-beta-thiophenylglucoside was used as donor in CH2Cl2 in the presence of NIS/TfOH as activator, the 6-O-beta-D-glycoside and a 3-O-orthoester were formed in a 1:2 ratio at -20 degrees C, while at 20 degrees C only the former could be isolated. Glycosidation of 1-O-benzoyl-2,4-O-benzylidene-5,6-O-isopropylidene-d-glucitol with tetra-O-acetyl-glucosyl bromide in MeCN in the presence of Hg(CN)2 afforded the corresponding 3-O-alpha- and 3-O-beta-glycopyranoside in a 1:4 ratio in MeCN and 1:5 in 1:1 benzene-MeNO2, respectively. When Hg(CN)2/HgBr2 was used as promoter, the corresponding orthoester was also formed. When tetra-O-acetyl-beta-thiophenylglucoside was used as donor, the 3-O-beta-anomer and the orthoester were obtained predominantly in a 3:2 ratio together with traces of the 3-O-alpha-glycoside. Both beta-glycosides could be smoothly converted into 3-beta-D-glucopyranosyl-D-glucitol.


Subject(s)
Glucosides/chemical synthesis , Sorbitol/analogs & derivatives , Sorbitol/chemical synthesis , Glycosides/chemistry , Glycosylation
4.
Carbohydr Res ; 339(8): 1569-79, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15178404

ABSTRACT

Glycosidation of 2,5-anhydro-1,6-di-O-benzoyl-D-mannitol with methyl(2,3,4-tri-O-acetyl-alpha-d-glucopyranosyl-1-O-trichloroacetimidate)uronate in the presence of trimethylsilyl triflate afforded the corresponding 3-O-beta-glycoside, which after deprotection was converted into its hexa-O-sulfate with DMF x SO3 to give after treatment with sodium acetate and subsequent saponification of the methyl ester with sodium hydroxide the hepta sodium salt of 2,5-anhydro-3-O-(beta-d-glucopyranosyl uronate)-D-mannitol hexa-O-sulfate. Glycosidation of the same acceptor with the alpha-thiophenylglycoside of methyl 2,4-di-O-acetyl-3-O-benzyl-L-idopyranosyl uronate in the presence of NIS/TfOH afforded the corresponding 3-O-alpha-glycoside in very low yield, therefore the alpha-thiophenylglycoside of 2-O-acetyl-2,4-O-benzylidene-3-O-benzyl-L-idopyranose was used as donor. The terminal hydroxymethyl group of the obtained disaccharide was subsequently oxidised with NaOCl/TEMPO and the obtained iduronic acid derivative was converted into the hepta sodium salt of 2,5-anhydro-3-O-(-alpha-L-idopyranosyluronate)-D-mannitol hexa-O-sulfonate with DMF x SO3 and subsequent treatment with sodium acetate.


Subject(s)
Disaccharides/chemical synthesis , Salts/chemical synthesis , Sulfuric Acid Esters/chemical synthesis , Carbohydrate Conformation , Disaccharides/chemistry , Glucuronic Acid/chemistry , Hexoses/chemistry , Iduronic Acid/chemistry , Molecular Structure , Salts/chemistry , Sodium Acetate/chemistry , Sodium Hydroxide/chemistry , Sulfuric Acid Esters/chemistry , Thioglycosides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...