Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Biol Macromol ; 270(Pt 2): 132332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768914

ABSTRACT

Two of the deadliest infectious diseases, COVID-19 and tuberculosis (TB), have combined to establish a worldwide pandemic, wreaking havoc on economies and claiming countless lives. The optimised, multitargeted medications may diminish resistance and counter them together. Based on computational expression studies, 183 genes were co-expressed in COVID-19 and TB blood samples. We used the multisampling screening algorithms on the top ten co-expressed genes (CD40, SHP2, Lysozyme, GATA3, cCBL, SIVmac239 Nef, CD69, S-adenosylhomocysteinase, Chemokine Receptor-7, and Membrane Protein). Imidurea is a multitargeted inhibitor for COVID-19 and TB, as confirmed by extensive screening and post-filtering utilising MM\GBSA algorithms. Imidurea has shown docking and MM\GBSA scores of -8.21 to -4.75 Kcal/mol and -64.16 to -29.38 Kcal/mol, respectively. The DFT, pharmacokinetics, and interaction patterns suggest that Imidurea may be a drug candidate, and all ten complexes were tested for stability and bond strength using 100 ns for all MD atoms. The modelling findings showed the complex's repurposing potential, with a cumulative deviation and fluctuation of <2 Å and significant intermolecular interaction, which validated the possibilities. Finally, an inhibition test was performed to confirm our in-silico findings on SARS-CoV-2 Delta variant infection, which was suppressed by adding imidurea to Vero E6 cells after infection.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Molecular Docking Simulation , Mycobacterium tuberculosis , SARS-CoV-2 , SARS-CoV-2/drug effects , Humans , COVID-19/virology , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Molecular Dynamics Simulation , Muramidase/chemistry , Muramidase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/chemistry , Antigens, Differentiation, T-Lymphocyte/metabolism
2.
Article in English | MEDLINE | ID: mdl-38557204

ABSTRACT

India saw a spike in COVID-19 cases in early 2023, and this wave of infection was attributed to XBB sublineages of SARS-CoV-2 Omicron variant. The impact of XBB wave was significantly shorter with low burden of severe cases or hospitalization as compared with previous SARS-CoV-2 variants of concern. Although a combination of old and new mutations in the spike region of XBB.1.16 variant led to a drastic reduction in the ability of antibodies from prior immunity to neutralize this virus, additional nonspike mutations suggested a possible change in its ability to suppress innate immune responses. In this study, we tested the sensitivity of Delta, BA.2.75, and XBB.1.16 variants to interferon-ß (IFN-ß) treatment and found that XBB.1.16 variant was most sensitive to IFN-ß. We next tested the ability of serum antibodies from healthy individuals to neutralize XBB.1.16. We showed that most of the individuals with hybrid immunity maintained a low but significant level of neutralizing antibodies to XBB.1.16 variant. Therefore, our observations indicated that both hybrid immunity because of natural infection and enhanced sensitivity to IFNs may have contributed to the low impact of XBB.1.16 infections in India.

3.
Nat Med ; 30(3): 670-674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321219

ABSTRACT

Dengue is a global epidemic causing over 100 million cases annually. The clinical symptoms range from mild fever to severe hemorrhage and shock, including some fatalities. The current paradigm is that these severe dengue cases occur mostly during secondary infections due to antibody-dependent enhancement after infection with a different dengue virus serotype. India has the highest dengue burden worldwide, but little is known about disease severity and its association with primary and secondary dengue infections. To address this issue, we examined 619 children with febrile dengue-confirmed infection from three hospitals in different regions of India. We classified primary and secondary infections based on IgM:IgG ratios using a dengue-specific enzyme-linked immunosorbent assay according to the World Health Organization guidelines. We found that primary dengue infections accounted for more than half of total clinical cases (344 of 619), severe dengue cases (112 of 202) and fatalities (5 of 7). Consistent with the classification based on binding antibody data, dengue neutralizing antibody titers were also significantly lower in primary infections compared to secondary infections (P ≤ 0.0001). Our findings question the currently widely held belief that severe dengue is associated predominantly with secondary infections and emphasizes the importance of developing vaccines or treatments to protect dengue-naive populations.


Subject(s)
Coinfection , Dengue Virus , Dengue , Severe Dengue , Humans , Child , Dengue/epidemiology , Severe Dengue/epidemiology , Antibodies, Viral , Coinfection/epidemiology , Fever
5.
J Clin Med ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337457

ABSTRACT

Background: This study was conducted with the objective of measuring the neutralizing and anti-receptor binding domain antibody levels against SARS-CoV-2 among laboratory-confirmed COVID-19 cases and exploring its long-term kinetics over a period of 1 year. Methods: One hundred laboratory-confirmed COVID-19 cases were recruited. Serum samples of the participants were collected within three months from the date of the positive COVID-19 report. The participants were prospectively followed up every three months for symptoms and the collection of blood samples for three additional rounds. The presence of anti-SARS-CoV-2 antibodies (IgA, IgG, and IgM antibodies), anti-receptor binding domain antibodies (anti-RBD), and neutralizing antibodies were measured. Findings: Median plaque reduction neutralization test (PRNT) titers showed a rising trend in the first three rounds of follow-up. The quantitative anti-receptor binding domain ELISA (QRBD) values showed a declining trend in the initial three rounds. However, both the PRNT titers and QRBD values showed significantly higher values for the fourth round of follow-up. Total antibody (WANTAI) levels showed an increasing trend in the initial three rounds (statistically significant). Interpretation: Neutralizing antibodies showed an increasing trend. The anti-receptor binding domain antibodies showed a decreasing trend. Neutralizing antibodies and anti-RBD antibodies persisted in the majority.

7.
Lancet Microbe ; 5(3): e216-e225, 2024 03.
Article in English | MEDLINE | ID: mdl-38278167

ABSTRACT

BACKGROUND: Accurate quantitation of immune markers is crucial for ensuring reliable assessment of vaccine efficacy against infectious diseases. This study was designed to confirm standardised performance of SARS-CoV-2 assays used to evaluate COVID-19 vaccine candidates at the initial seven laboratories (in North America, Europe, and Asia) of the Coalition for Epidemic Preparedness Innovations (CEPI) Centralized Laboratory Network (CLN). METHODS: Three ELISAs (pre-spike protein, receptor binding domain, and nucleocapsid), a microneutralisation assay (MNA), a pseudotyped virus-based neutralisation assay (PNA), and an IFN-γ T-cell ELISpot assay were developed, validated or qualified, and transferred to participating laboratories. Immune responses were measured in ELISA laboratory units (ELU) for ELISA, 50% neuralisation dilution (ND50) for MNA, 50% neutralisation titre (NT50) for PNA, and spot-forming units for the ELISpot assay. Replicate assay results of well characterised panels and controls of blood samples from individuals with or without SARS-CoV-2 infection were evaluated by geometric mean ratios, standard deviation, linear regression, and Spearman correlation analysis for consistency, accuracy, and linearity of quantitative measurements across all laboratories. FINDINGS: High reproducibility of results across all laboratories was demonstrated, with interlaboratory precision of 4·1-7·7% coefficient of variation for all three ELISAs, 3·8-19·5% for PNA, and 17·1-24·1% for MNA, over a linear range of 11-30 760 ELU per mL for the three ELISAs, 14-7876 NT50 per mL for PNA, and 21-25 587 ND50 per mL for MNA. The MNA was also adapted for detection of neutralising antibodies against the major SARS-CoV-2 variants of concern. The results of PNA and MNA (r=0·864) and of ELISA and PNA (r=0·928) were highly correlated. The IFN-γ ELISpot interlaboratory variability was 15·9-49·9% coefficient of variation. Sensitivity and specificity were close to 100% for all assays. INTERPRETATION: The CEPI CLN provides accurate quantitation of anti-SARS-CoV-2 immune response across laboratories to allow direct comparisons of different vaccine formulations in different geographical areas. Lessons learned from this programme will serve as a model for faster responses to future pandemic threats and roll-out of effective vaccines. FUNDING: CEPI.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Laboratories , Reproducibility of Results , Antibodies, Viral , Immunity
8.
PLoS One ; 18(12): e0287807, 2023.
Article in English | MEDLINE | ID: mdl-38079384

ABSTRACT

Repeated serological testing tells about the change in the overall infection in a community. This study aimed to evaluate changes in antibody prevalence and kinetics in a closed cohort over six months in different sub-populations in India. The study included 10,000 participants from rural and urban areas in five states and measured SARS-CoV-2 antibodies in serum in three follow-up rounds. The overall seroprevalence increased from 73.9% in round one to 90.7% in round two and 92.9% in round three. Among seropositive rural participants in round one, 98.2% remained positive in round two, and this percentage remained stable in urban and tribal areas in round three. The results showed high antibody prevalence that increased over time and was not different based on area, age group, or sex. Vaccinated individuals had higher antibody prevalence, and nearly all participants had antibody positivity for up to six months.


Subject(s)
COVID-19 , Humans , Prospective Studies , Seroepidemiologic Studies , COVID-19/epidemiology , SARS-CoV-2 , Antibodies, Viral , India/epidemiology
9.
Commun Med (Lond) ; 3(1): 148, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857747

ABSTRACT

BACKGROUND: India is hyperendemic to dengue and over 50% of adults are seropositive. There is limited information on the association between neutralizing antibody profiles from prior exposure and viral RNA levels during subsequent infection. METHODS: Samples collected from patients with febrile illness was used to assess seropositivity by indirect ELISA. Dengue virus (DENV) RNA copy numbers were estimated by quantitative RT-PCR and serotype of the infecting DENV was determined by nested PCR. Focus reduction neutralizing antibody titer (FRNT) assay was established using Indian isolates to measure the levels of neutralizing antibodies and also to assess the cross-reactivity to related flaviviruses namely Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). RESULTS: In this cross-sectional study, we show that dengue seropositivity increased from 52% in the 0-15 years group to 89% in >45 years group. Antibody levels negatively correlate with dengue RNAemia on the day of sample collection and higher RNAemia is observed in primary dengue as compared to secondary dengue. The geometric mean FRNT50 titers for DENV-2 is significantly higher as compared to the other three DENV serotypes. We observe cross-reactivity with ZIKV and significantly lower or no neutralizing antibodies against JEV and WNV. The FRNT50 values for international isolates of DENV-1, DENV-3 and DENV-4 is significantly lower as compared to Indian isolates. CONCLUSIONS: Majority of the adult population in India have neutralizing antibodies to all the four DENV serotypes which correlates with reduced RNAemia during subsequent infection suggesting that antibodies can be considered as a good correlate of protection.


India is one of the hotspots of dengue infection. The objective of the study was to assess whether having previous exposure to dengue virus could influence how the body will respond to repeat infections with dengue virus. Here, we analysed samples from febrile patients to measure the amount of dengue virus genetic material in the blood, the type of virus and the amount of antibodies, which are proteins produced by the host in response to dengue virus infection. The majority of patient samples demonstrated the capability to restrict all four types of dengue virus in circulation within the country, but reduced capacity to restrict when it comes to international dengue virus types. These data will help to inform future dengue vaccine design and clinical studies in India.

10.
PLoS Pathog ; 19(2): e1011196, 2023 02.
Article in English | MEDLINE | ID: mdl-36827451

ABSTRACT

The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.


Subject(s)
COVID-19 , Humans , Broadly Neutralizing Antibodies , Kinetics , SARS-CoV-2/genetics , Antibodies, Neutralizing , Interferons/genetics , Antibodies, Viral
11.
BMC Infect Dis ; 22(1): 915, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36476336

ABSTRACT

BACKGROUND: Several methodological tests are available to detect SARS-CoV-2 antibody. Tests are mostly used in the aid of diagnosis or for serological assessment. No tests are fully confirmatory and have variable level of diagnostic ability. We aimed at assessing agreement with three serological tests: quantitative anti receptor binding domain ELISA (Q-RBD), qualitative ELISA (WANTAI SARS-CoV-2 Ab) and qualitative chemiluminescence assay (CLIA). METHODS: This study was a part of a large population based sero-epidemiological cohort study. Participants aged 1 year or older were included from 25 randomly selected clusters each in Delhi urban (urban resettlement colony of South Delhi district) and Delhi rural (villages in Faridabad district, Haryana). Three type of tests were applied to all the baseline blood samples. Result of the three tests were evaluated by estimating the total agreement and kappa value. RESULTS: Total 3491 blood samples collected from March to September, 2021, out of which 1700 (48.7%) from urban and 1791 (51.3%) from rural. Overall 44.1% of participants were male. The proportion of sero-positivity were 78.1%, 75.2% and 31.8% by Wantai, QRBD and CLIA tests respectively. The total agreement between Wantai and QRBD was 94.5%, 53.1% between Wantai and CLIA, and 56.8% between QRBD and CLIA. The kappa value between these three tests were 0.84 (95% CI 0.80-0.87), 0.22 (95% CI 0.19-0.24) and 0.26 (95% CI 0.23-0.28). CONCLUSIONS: There was strong concordance between Wantai and QRBD test. Agreement between CLIA with other two tests was low. Wantai and QRBD tests measuring the antibody to same S protein can be used with high agreement based on the relevant scenario.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , Female , Cohort Studies , COVID-19/diagnosis , COVID-19/epidemiology , Research
12.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Article in English | MEDLINE | ID: mdl-36508467

ABSTRACT

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/therapy , Mice, Transgenic , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
13.
J Family Med Prim Care ; 11(6): 2816-2823, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36119298

ABSTRACT

Background: Estimating seroepidemiolgical prevalence of SARS-CoV-2 antibody is an essential public health strategy. There is insufficient evidence of prevalence among those belonging to young age population in India. Objective: To compare the SARS-CoV-2 seropositivity rate between children and adults in selected sites from India. Materials and Methods: This was a multicentric population-based seroepidemiological study conducted in selected urban and rural areas of five sites selected from four states (Delhi, Odisha, Uttar Pradesh, Tripura) of India. Participants aged ≥1 year were included from different clusters of each area. Total serum antibody against SARS-CoV-2 virus was assessed qualitatively by using a standard enzyme-linked immunosorbent assay (ELISA) kit. Results: Data collection period was from 15 March 2021 to 10 June 2021. Total available data was of 4509 participants, of whom 700 were <18 years of age and 3809 were ≥18 years of age. The site-wise number of available data among those aged 2-17 years was 92, 189, 165, 146 and 108 for the sites of Delhi urban, Delhi rural, Bhubaneswar rural, Gorakhpur rural and Agartala rural area, respectively. The seroprevalence was 55.7% in the <18 years age group and 63.5% in the ≥18 years age group. The prevalence among female children was 58% and among male children was 53%. Conclusion: SARS-CoV-2 seropositivity rate among children was high and comparable to that of the adult population. Hence, it is unlikely that any future third wave by prevailing SARS-CoV-2 variant would disproportionately infect children 2 years or older.

14.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36016201

ABSTRACT

Background: The plaque reduction neutralization test (PRNT) is the gold standard to detect the neutralizing capacity of serum antibodies. Neutralizing antibodies confer protection against further infection. The present study measured the antibody level against SARS-CoV-2 among laboratory-confirmed COVID-19 cases and evaluated whether the presence of anti-SARS-CoV-2 antibodies indicates virus neutralizing capacity. Methods: One hundred COVID-19 confirmed cases were recruited. Their sociodemographic details and history of COVID-19 vaccination, contact with positive COVID-19 cases, and symptoms were ascertained using a self-developed semi-structured interview schedule. Serum samples of the participants were collected within three months from the date of the positive report of COVID-19. The presence of anti-SARS-CoV-2 antibodies (IgA, IgG and IgM antibodies), receptor binding domain antibodies (anti-RBD), and neutralizing antibodies were measured. Findings: Almost all the participants had anti-SARS-CoV-2 antibodies (IgA, IgG and IgM) (99%) and anti-RBD IgG antibodies (97%). However, only 69% had neutralizing antibodies against SARS-CoV-2. Anti-RBD antibody levels were significantly higher among participants having neutralizing antibodies compared with those who did not. Interpretation: The present study highlights that the presence of antibodies against SARS-CoV-2, or the presence of anti-RBD antibodies does not necessarily imply the presence of neutralizing antibodies.

15.
Nat Commun ; 13(1): 3451, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705548

ABSTRACT

Many adults in India have received at least one dose of COVID-19 vaccine with or without a prior history SARS-CoV-2 infection. However, there is limited information on the effect of prior immunity on antibody response upon vaccination in India. As immunization of individuals continues, we aimed to assess whether pre-existing antibodies are further boosted by a single dose of BBV152, an inactivated SARS-CoV-2 vaccine, and, if these antibodies can neutralize SARS-CoV-2 Delta and Omicron variants. Here we show that natural infection during the second wave in 2021 led to generation of neutralizing antibodies against other lineages of SARS-CoV-2 including the Omicron variant, albeit at a significantly lower level for the latter. A single dose of BBV152 boosted antibody titers against the Delta and the Omicron variants but the antibody levels remained low against the Omicron variant. Boosting of antibodies showed negative correlation with baseline neutralizing antibody titers.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
16.
iScience ; 25(6): 104384, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620424

ABSTRACT

Monocytes are known to play a critical role in dengue pathophysiology. However, which monocyte subset expresses what inflammatory mediator(s) and what transcriptional features distinguish each of the monocyte subset in vivo remain poorly understood. In this study we provide a detailed transcriptional analysis of the three human monocyte subsets in healthy children and in children with dengue febrile illness. Notably, we found that the CD14+ CD16high intermediate monocyte subset from dengue patients highly upregulated key genes involved in mediating inflammation, endothelial dysfunction, vascular permeability, tissue extravasation, and clot prevention compared to healthy children. The CD14+CD16low classical monocytes shared some of these features. These two subsets increased massively in patients with severe dengue. By contrast, the CD14-CD16high nonclassical monocyte subset upregulated key genes involved in vasoconstriction, endothelial barrier stability, and are involved in endothelial patrolling while showing a significant decline from circulation. These findings improve our understanding of monocyte responses in dengue.

17.
J Clin Virol Plus ; 2(1): 100061, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35262034

ABSTRACT

Background: SARS-CoV-2 infection in children frequently leads to only asymptomatic and mild infections. It has been suggested that frequent infections due to low-pathogenicity coronaviruses in children, impart immunity against SARS-CoV-2 in this age group. Methods: From a prospective birth cohort study prior to the pandemic, we identified children with proven low-pathogenicity coronavirus infections. Convalescent sera from these children were tested for antibodies against respective seasonal coronaviruses (OC43, NL63, and 229E) and SARS-CoV-2 by immunofluorescence and virus microneutralization assay respectively. Results: Forty-two children with proven seasonal coronavirus infection were included. Convalescent sera from these samples demonstrated antibodies against the respective seasonal coronaviruses. Of these, 40 serum samples showed no significant neutralization of SARS-CoV-2, while 2 samples showed inconclusive results. Conclusion: These findings suggest that the antibodies generated in low-pathogenicity coronavirus infections offer no protection from SARS-CoV-2 infection in young children.

18.
EBioMedicine ; 78: 103938, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35305396

ABSTRACT

BACKGROUND: Rapid spread of the omicron SARS-CoV-2 variant despite extensive vaccination suggests immune escape. The neutralising ability of different vaccines alone or with natural SARS-CoV-2 infection against omicron is not well-known. METHODS: In this cross-sectional study, we tested the ability of vaccine and natural infection induced antibodies to neutralise omicron variant in a live virus neutralisation assay in four groups of individuals: (i) ChAdOx1 nCoV-19 vaccination, (ii) ChAdOx1 nCoV-19 vaccination plus prior SARS-CoV-2 infection, (iii) vaccination with inactivated virus vaccine (BBV152), and (iv) BBV152 vaccination plus prior SARS-CoV-2 infection. Primary outcome was fold-change in virus neutralisation titre against omicron compared with ancestral virus. FINDINGS: We included 80 subjects. The geometric mean titre (GMT) of the 50% focus reduction neutralisation test (FRNT50) was 380·4 (95% CI: 221·1, 654·7) against the ancestral virus with BBV152 vaccination and 379·3 (95% CI: 185·6, 775·2) with ChAdOx1 nCov-19 vaccination alone. GMT for vaccination plus infection groups were 806·1 (95% CI: 478·5, 1357·8) and 1526·2 (95% CI: 853·2, 2730·0), respectively. Against omicron variant, only 5 out of 20 in both BBV152 and ChAdOx1 nCoV-19 vaccine only groups, 6 out of 20 in BBV152 plus prior SARS-CoV-2 infection group, and 9 out of 20 in ChAdOx1 nCoV-19 plus prior SARS-CoV-2 infection group exhibited neutralisation titres above the lower limit of quantification (1:20) suggesting better neutralisation with prior infection. A reduction of 26·6 and 25·7 fold in FRNT50 titres against Omicron compared to ancestral SARS-CoV-2 strain was observed for individuals without prior SARS-CoV-2 infection vaccinated with BBV152 and ChAdOx1 nCoV-19, respectively. The corresponding reduction was 57·1 and 58·1 fold, respectively, for vaccinated individuals with prior infection. The 50% neutralisation titre against omicron demonstrated moderate correlation with serum anti-RBD IgG levels [Spearman r: 0·58 (0·41, 0·71)]. INTERPRETATION: Significant reduction in the neutralising ability of both vaccine-induced and vaccine plus infection-induced antibodies was observed for omicron variant which might explain immune escape. FUNDING: Department of Biotechnology, India; Bill & Melinda Gates Foundation, USA.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Cross-Sectional Studies , Humans , SARS-CoV-2 , Vaccines, Inactivated
19.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193957

ABSTRACT

Mycobacterium tuberculosis (Mtb) endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and Mtb iron-chelating siderophores, mycobactin, have been known since 1965. Currently, it is not known whether Mtb produces zinc scavenging molecules. Here, we characterize low-molecular-weight zinc-binding compounds secreted and imported by Mtb for zinc acquisition. These molecules, termed kupyaphores, are produced by a 10.8 kbp biosynthetic cluster and consists of a dipeptide core of ornithine and phenylalaninol, where amino groups are acylated with isonitrile-containing fatty acyl chains. Kupyaphores are stringently regulated and support Mtb survival under both nutritional deprivation and intoxication conditions. A kupyaphore-deficient Mtb strain is unable to mobilize sufficient zinc and shows reduced fitness upon infection. We observed early induction of kupyaphores in Mtb-infected mice lungs after infection, and these metabolites disappeared after 2 wk. Furthermore, we identify an Mtb-encoded isonitrile hydratase, which can possibly mediate intracellular zinc release through covalent modification of the isonitrile group of kupyaphores. Mtb clinical strains also produce kupyaphores during early passages. Our study thus uncovers a previously unknown zinc acquisition strategy of Mtb that could modulate host-pathogen interactions and disease outcome.


Subject(s)
Lipopeptides/metabolism , Mycobacterium tuberculosis/metabolism , Zinc/metabolism , Animals , Bacterial Proteins/metabolism , Biological Transport , Chelating Agents/metabolism , Disease Models, Animal , Homeostasis , Host-Pathogen Interactions , Metals/metabolism , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/growth & development , Siderophores/metabolism , Tuberculosis/microbiology
20.
Elife ; 112022 01 11.
Article in English | MEDLINE | ID: mdl-35014610

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the Golden Syrian hamster causes lung pathology that resembles human coronavirus disease (COVID-19). However, extrapulmonary pathologies associated with SARS-CoV-2 infection and post-COVID sequelae remain to be understood. Here, we show, using a hamster model, that the early phase of SARS-CoV-2 infection leads to an acute inflammatory response and lung pathologies, while the late phase of infection causes cardiovascular complications (CVCs) characterized by ventricular wall thickening associated with increased ventricular mass/body mass ratio and interstitial coronary fibrosis. Molecular profiling further substantiated our findings of CVC as SARS-CoV-2-infected hamsters showed elevated levels of serum cardiac troponin I, cholesterol, low-density lipoprotein, and long-chain fatty acid triglycerides. Serum metabolomics profiling of SARS-CoV-2-infected hamsters identified N-acetylneuraminate, a functional metabolite found to be associated with CVC, as a metabolic marker was found to be common between SARS-CoV-2-infected hamsters and COVID-19 patients. Together, we propose hamsters as a suitable animal model to study post-COVID sequelae associated with CVC, which could be extended to therapeutic interventions.


Subject(s)
COVID-19 , Cardiovascular Diseases , SARS-CoV-2/metabolism , Animals , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Cholesterol/blood , Disease Models, Animal , Female , Humans , Lipoproteins, LDL/blood , Mesocricetus , Triglycerides/blood , Troponin I/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...