Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Immunol ; 15: 38, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25424735

ABSTRACT

BACKGROUND: The Syrian golden hamster (Mesocricetus aureus) has been used as a model to study infections caused by a number of human pathogens. Studies of immunopathogenesis in hamster infection models are challenging because of the limited availability of reagents needed to define cellular and molecular determinants. RESULTS: We sequenced a hamster cDNA library and developed a first-generation custom cDNA microarray that included 5131 unique cDNAs enriched for immune response genes. We used this microarray to interrogate the hamster spleen response to Leishmania donovani, an intracellular protozoan that causes visceral leishmaniasis. The hamster model of visceral leishmaniasis is of particular interest because it recapitulates clinical and immunopathological features of human disease, including cachexia, massive splenomegaly, pancytopenia, immunosuppression, and ultimately death. In the microarray a differentially expressed transcript was identified as having at least a 2-fold change in expression between uninfected and infected groups and a False Discovery Rate of <5%. Following a relatively silent early phase of infection (at 7 and 14 days post-infection only 8 and 24 genes, respectively, were differentially expressed), there was dramatic upregulation of inflammatory and immune-related genes in the spleen (708 differentially expressed genes were evident at 28 days post-infection). The differentially expressed transcripts included genes involved in inflammation, immunity, and immune cell trafficking. Of particular interest there was concomitant upregulation of the IFN-γ and interleukin (IL)-4 signaling pathways, with increased expression of a battery of IFN-γ- and IL-4-responsive genes. The latter included genes characteristic of alternatively activated macrophages. CONCLUSIONS: Transcriptional profiling was accomplished in the Syrian golden hamster, for which a fully annotated genome is not available. In the hamster model of visceral leishmaniasis, a robust and functional IFN-γ response did not restrain parasite load and progression of disease. This supports the accumulating evidence that macrophages are ineffectively activated to kill the parasite. The concomitant expression of IL-4/IL-13 and their downstream target genes, some of which were characteristic of alternative macrophage activation, are likely to contribute to this. Further dissection of mechanisms that lead to polarization of macrophages toward a permissive state is needed to fully understand the pathogenesis of visceral leishmaniasis.


Subject(s)
Cytokines/genetics , Gene Expression Profiling , Gene Expression Regulation , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/immunology , Spleen/metabolism , Spleen/parasitology , Animals , Cluster Analysis , Cricetinae , Cytokines/metabolism , DNA, Complementary/genetics , Disease Progression , Expressed Sequence Tags , Gene Ontology , Humans , Interferon-gamma/metabolism , Leishmania donovani/immunology , Mesocricetus/immunology , Mesocricetus/parasitology , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Spleen/pathology , Up-Regulation/genetics
2.
PLoS Pathog ; 10(6): e1004165, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24967908

ABSTRACT

Host arginase 1 (arg1) expression is a significant contributor to the pathogenesis of progressive visceral leishmaniasis (VL), a neglected tropical disease caused by the intracellular protozoan Leishmania donovani. Previously we found that parasite-induced arg1 expression in macrophages was dependent on STAT6 activation. Arg1 expression was amplified by, but did not require, IL-4, and required de novo synthesis of unknown protein(s). To further explore the mechanisms involved in arg1 regulation in VL, we screened a panel of kinase inhibitors and found that inhibitors of growth factor signaling reduced arg1 expression in splenic macrophages from hamsters with VL. Analysis of growth factors and their signaling pathways revealed that the Fibroblast Growth Factor Receptor 1 (FGFR-1) and Insulin-like Growth Factor 1 Receptor (IGF-1R) and a number of downstream signaling proteins were activated in splenic macrophages isolated from hamsters infected with L. donovani. Recombinant FGF-2 and IGF-1 increased the expression of arg1 in L. donovani infected hamster macrophages, and this induction was augmented by IL-4. Inhibition of FGFR-1 and IGF-1R decreased arg1 expression and restricted L. donovani replication in both in vitro and ex vivo models of infection. Inhibition of the downstream signaling molecules JAK and AKT also reduced the expression of arg1 in infected macrophages. STAT6 was activated in infected macrophages exposed to either FGF-2 or IGF-1, and STAT6 was critical to the FGFR-1- and IGF-1R-mediated expression of arg1. The converse was also true as inhibition of FGFR-1 and IGF-1R reduced the activation of STAT6 in infected macrophages. Collectively, these data indicate that the FGFR/IGF-1R and IL-4 signaling pathways converge at STAT6 to promote pathologic arg1 expression and intracellular parasite survival in VL. Targeted interruption of these pathological processes offers an approach to restrain this relentlessly progressive disease.


Subject(s)
Arginase/metabolism , Leishmaniasis, Visceral/immunology , Receptor, Fibroblast Growth Factor, Type 1/agonists , Receptor, IGF Type 1/agonists , STAT6 Transcription Factor/metabolism , Signal Transduction , Th2 Cells/immunology , Animals , Arginase/genetics , Cell Line , Cells, Cultured , Disease Progression , Enzyme Induction/drug effects , Host-Parasite Interactions/drug effects , Interleukin-4/metabolism , Leishmania donovani/growth & development , Leishmania donovani/immunology , Leishmania donovani/pathogenicity , Leishmania donovani/physiology , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/physiopathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Mesocricetus , Protein Kinase Inhibitors/pharmacology , RNA Interference , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , STAT6 Transcription Factor/agonists , STAT6 Transcription Factor/antagonists & inhibitors , STAT6 Transcription Factor/genetics , Signal Transduction/drug effects , Th2 Cells/drug effects , Th2 Cells/metabolism , Th2 Cells/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...