Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 224(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33914030

ABSTRACT

In the wild, being able to recognize and remember specific locations related to food sources and the associated attributes of landmarks is a cognitive trait important for survival. In the present work, we show that the crab Neohelice granulata can be trained to associate a specific environment with an appetitive reward in a conditioned place preference task. After a single training trial, when the crabs were presented with a food pellet in the target quadrant of the training arena, they were able to form a long-term memory related to the event. This memory was evident at least 24 h after training and was protein synthesis dependent. Importantly, the target area of the arena proved to be a non-neutral environment, given that animals initially avoided the target quadrant. In the present work, we introduce for the first time an associative one-trial memory paradigm including a conditioned stimulus with a clear valence performed in a crustacean.


Subject(s)
Brachyura , Animals , Conditioning, Classical , Conditioning, Operant , Learning , Memory
2.
Neurobiol Learn Mem ; 173: 107275, 2020 09.
Article in English | MEDLINE | ID: mdl-32659348

ABSTRACT

Long-term memory has been associated with morphological changes in the brain, which in turn tightly correlate with changes in synaptic efficacy. Such plasticity is proposed to rely on dendritic spines as a neuronal canvas on which these changes can occur. Given the key role of actin cytoskeleton dynamics in spine morphology, major regulating factors of this process such as Cofilin 1 (Cfl1) and LIM kinase (LIMK), an inhibitor of Cfl1 activity, are prime molecular targets that may regulate dendritic plasticity. Using a contextual fear conditioning paradigm in mice, we found that pharmacological induction of depolymerization of actin filaments through the inhibition of LIMK causes an impairment in memory reconsolidation, as well as in memory consolidation. On top of that, Cfl1 activity is inhibited and its mRNA is downregulated in CA1 neuropil after re-exposure to the training context. Moreover, by pharmacological disruption of actin cytoskeleton dynamics, the process of memory extinction can either be facilitated or impaired. Our results lead to a better understanding of the role of LIMK, Cfl1 and actin cytoskeleton dynamics in the morphological and functional changes underlying the synaptic plasticity of the memory trace.


Subject(s)
Actins/metabolism , Cofilin 1/metabolism , Fear/physiology , Hippocampus/metabolism , Lim Kinases/metabolism , Memory/physiology , Neuronal Plasticity/physiology , Animals , Male , Memory Consolidation/physiology , Mice
3.
Sci Rep ; 9(1): 12157, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434945

ABSTRACT

Memories are a product of the concerted activity of many brain areas. Deregulation of consolidation and reprocessing of mnemonic traces that encode fearful experiences might result in fear-related psychopathologies. Here, we assessed how pre-established memories change with experience, particularly the labilization/reconsolidation of memory, using the whole-brain analysis technique of positron emission tomography in male mice. We found differences in glucose consumption in the lateral neocortex, hippocampus and amygdala in mice that underwent labilization/reconsolidation processes compared to animals that did not reactivate a fear memory. We used chemogenetics to obtain insight into the role of cortical areas in these phases of memory and found that the lateral neocortex is necessary for fear memory reconsolidation. Inhibition of lateral neocortex during reconsolidation altered glucose consumption levels in the amygdala. Using an optogenetic/neuronal recording-based strategy we observed that the lateral neocortex is functionally connected with the amygdala, which, along with retrograde labeling using fluorophore-conjugated cholera toxin subunit B, support a monosynaptic connection between these areas and poses this connection as a hot-spot in the circuits involved in reactivation of fear memories.


Subject(s)
Fear , Memory/physiology , Neocortex/metabolism , Amygdala/diagnostic imaging , Amygdala/metabolism , Amygdala/physiology , Animals , Behavior, Animal , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , Neocortex/cytology , Neocortex/diagnostic imaging , Optogenetics , Patch-Clamp Techniques , Positron-Emission Tomography
4.
Mol Neurobiol ; 55(2): 958-967, 2018 02.
Article in English | MEDLINE | ID: mdl-28084590

ABSTRACT

Long-lasting changes in dendritic spines provide a physical correlate for memory formation and persistence. LIM kinase (LIMK) plays a critical role in orchestrating dendritic actin dynamics during memory processing, since it is the convergent downstream target of both the Rac1/PAK and RhoA/ROCK pathways that in turn induce cofilin phosphorylation and prevent depolymerization of actin filaments. Here, using a potent LIMK inhibitor (BMS-5), we investigated the role of LIMK activity in the dorsal hippocampus during contextual fear memory in rats. We first found that post-training administration of BMS-5 impaired memory consolidation in a dose-dependent manner. Inhibiting LIMK before training also disrupted memory acquisition. We then demonstrated that hippocampal LIMK activity seems to be critical for memory retrieval and reconsolidation, since both processes were impaired by BMS-5 treatment. Contextual fear memory extinction, however, was not sensitive to the same treatment. In conclusion, our findings demonstrate that hippocampal LIMK activity plays an important role in memory acquisition, consolidation, retrieval, and reconsolidation during contextual fear conditioning.


Subject(s)
Enzyme Inhibitors/pharmacology , Extinction, Psychological/drug effects , Hippocampus/drug effects , Lim Kinases/antagonists & inhibitors , Memory Consolidation/drug effects , Memory/drug effects , Animals , Conditioning, Psychological/drug effects , Fear/drug effects , Male , Pain Threshold/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...