Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(23): 15869-15878, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830115

ABSTRACT

The craft of tuning optical properties is well-established for crystalline inorganic and hybrid solids. However, a far greater challenge is to tune the optical properties of organic materials systematically by design. We now introduce a synthesis concept that enables us to alter the optical properties of crystalline covalent organic frameworks (COFs) systematically using isomeric structures of thienothiophene-based building blocks (T23/32T) combined with a variety of tetratopic aromatic amines, e.g., the Wurster moiety (W-NH2). This concept is demonstrated for the synthesis of COFs in bulk and film forms and provides highly crystalline and porous isomeric COFs featuring predesigned photophysical properties. The band gap of the framework can be tuned continuously and precisely by chemically doping the pristine W23TT COF with its related constitutional isomer building block. Density-functional theory investigations of COF model compounds indicate that the extent of π-conjugation is among the key characteristics enabling the band-gap engineering.

2.
Nature ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839960

ABSTRACT

Covalent organic frameworks (COFs) are a functional material class able to harness, convert and store energy. However, after almost 20 years of research, there are no coherent prediction rules for their synthesis conditions. This is partly because of an incomplete picture of nucleation and growth at the early stages of formation. Here we use the optical technique interferometric scattering microscopy (iSCAT)1-3 for in operando studies of COF polymerization and framework formation. We observe liquid-liquid phase separation, pointing to the existence of structured solvents in the form of surfactant-free (micro)emulsions in conventional COF synthesis. Our findings show that the role of solvents extends beyond solubility to being kinetic modulators by compartmentation of reactants and catalyst. Taking advantage of these observations, we develop a synthesis protocol for COFs using room temperature instead of elevated temperatures. This work connects framework synthesis with liquid phase diagrams and thereby enables an active design of the reaction environment, emphasizing that visualization of chemical reactions by means of light-scattering-based techniques can be a powerful approach for advancing rational materials synthesis.

3.
Chemistry ; : e202401344, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771916

ABSTRACT

π­Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis methods with large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF p-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.

4.
J Mater Chem A Mater ; 12(17): 10044-10049, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38694264

ABSTRACT

A novel cubic mesoporous metal-organic framework (MOF), consisting of hexahydroxy-cata-hexabenzocoronene (c-HBC) and FeIII ions is presented. The highly crystalline and porous MOF features broad optical absorption over the whole visible and near infrared spectral regions. An electrical conductivity of 10-4 S cm-1 was measured on a pressed pellet.

5.
Inorg Chem ; 63(1): 129-140, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38109782

ABSTRACT

Three new coordination polymers (CPs) constructed from the linker 1,4-di(dithiocarboxylate) (BDDTC2-)─the sulfur-analog of 1,4-benzenedicarboxylate (BDC2-)─together with Mn-, Zn-, and Fe-based inorganic SBUs are reported with description of their structural and electronic properties. Single-crystal X-ray diffraction revealed structural diversity ranging from one-dimensional chains in [Mn(BDDTC)(DMF)2] (1) to two-dimensional (2D) honeycomb sheets observed for [Zn2(BDDTC)3][Zn(DMF)5(H2O)] (2). Gas adsorption experiments confirmed a 3D porous structure for the mixed-valent material [Fe2(BDDTC)2(OH)] (3). 3 contains a 1:1 ratio of Fe2+/3+ ions, as evidenced by 57Fe Mössbauer, X-band EPR, and X-ray absorption spectroscopy. Its empirical formula was established by elemental analysis, thermal gravimetric analysis, infrared vibrational spectroscopy, and X-ray absorption spectroscopy in lieu of elusive single-crystal X-ray diffraction data. In contrast to the Mn- and Zn-based compounds 1 and 2, the Fe2+/3+ CP 3 showed remarkably high electrical conductivity of 5 × 10-3 S cm-1 (according to van der Pauw measurements), which is within the range of semiconducting materials. Overall, our study confirms that sulfur derivatives of typical carboxylate linkers (e.g., BDC) are suitable for the construction of electrically conducting CPs, due to acceptedly higher covalency in metal-ligand bonding compared to the electrically insulating carboxylate CPs or metal-organic frameworks. At the same time, the direct comparison between insulating CPs 1 and 2 with CP 3 emphasizes that the electronic structure of the metal is likewise a crucial aspect to construct electrically conductive materials.

6.
Angew Chem Int Ed Engl ; 62(30): e202302872, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37141015

ABSTRACT

A three-component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation-inducing COF precursor and the diamines o-phenylenediamine (Ph), 2,3-diaminonaphthalene (Naph), or (1R,2R)-(+)-1,2-diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11-hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene-fused azaacene, i.e., Aza-COF series with full conversion of the dione moiety, long-range order, and high surface area. In addition, the novel three-component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza-COFs with nanostructured surfaces on various substrates. The Aza-COFs exhibit light absorption maxima in the blue spectral region, and each Aza-COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza-Ph- and Aza-Naph-COFs suggest ultrafast relaxation dynamics of excited-states within these COFs.

7.
Angew Chem Int Ed Engl ; 60(33): 18065-18072, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-33780115

ABSTRACT

We report the synthesis of a unique cubic metal-organic framework (MOF), Fe-HHTP-MOF, comprising hexahydroxytriphenylene (HHTP) supertetrahedral units and FeIII ions, arranged in a diamond topology. The MOF is synthesized under solvothermal conditions, yielding a highly crystalline, deep black powder, with crystallites of 300-500 nm size and tetrahedral morphology. Nitrogen sorption analysis indicates a highly porous material with a surface area exceeding 1400 m2 g-1 . Furthermore, Fe-HHTP-MOF shows broadband absorption from 475 up to 1900 nm with excellent absorption capability of 98.5 % of the incoming light over the visible spectral region. Electrical conductivity measurements of pressed pellets reveal a high intrinsic electrical conductivity of up to 10-3  S cm-1 . Quantum mechanical calculations predict Fe-HHTP-MOF to be an efficient electron conductor, exhibiting continuous charge-carrier pathways throughout the structure.

8.
Angew Chem Int Ed Engl ; 60(10): 5519-5526, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33015946

ABSTRACT

The rising demand for clean water for a growing and increasingly urban global population is one of the most urgent issues of our time. Here, we introduce the synthesis of a unique nanoscale architecture of pillar-like Co-CAT-1 metal-organic framework (MOF) crystallites on gold-coated woven stainless steel meshes with large, 50 µm apertures. These nanostructured mesh surfaces feature superhydrophilic and underwater superoleophobic wetting properties, allowing for gravity-driven, highly efficient oil-water separation featuring water fluxes of up to nearly one million L m-2 h-1 . Water physisorption experiments reveal the hydrophilic nature of Co-CAT-1 with a total water vapor uptake at room temperature of 470 cm3 g-1 . Semiempirical molecular orbital calculations shed light on water affinity of the inner and outer pore surfaces. The MOF-based membranes enable high separation efficiencies for a number of liquids tested, including the notorious water pollutant, crude oil, affording chemical oxygen demand (COD) concentrations below 25 mg L-1 of the effluent. Our results demonstrate the great impact of suitable nanoscale surface architectures as a means of encoding on-surface extreme wetting properties, yielding energy-efficient water-selective large-aperture membranes.

9.
Nat Chem ; 12(11): 985-987, 2020 11.
Article in English | MEDLINE | ID: mdl-33093679
10.
Chem Sci ; 11(47): 12843-12853, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-34094480

ABSTRACT

Covalent organic frameworks (COFs) define a versatile structural paradigm combining attractive properties such as crystallinity, porosity, and chemical and structural modularity which are valuable for various applications. For the incorporation of COFs into optoelectronic devices, efficient charge carrier transport and intrinsic conductivity are often essential. Here, we report the synthesis of two imine-linked two-dimensional COFs, WTA and WBDT, featuring a redox-active Wurster-type motif based on the twisted tetragonal N,N,N',N'-tetraphenyl-1,4-phenylenediamine node. By condensing this unit with either terephthalaldehyde (TA) or benzodithiophene dialdehyde (BDT), COFs featuring a dual-pore kagome-type structure were obtained as highly crystalline materials with large specific surface areas and mesoporosity. In addition, the experimentally determined high conduction band energies of both COFs render them suitable candidates for oxidative doping. The incorporation of a benzodithiophene linear building block into the COF allows for high intrinsic macroscopic conductivity. Both anisotropic and average isotropic electrical conductivities were determined with van der Pauw measurements using oriented films and pressed pellets, respectively. Furthermore, the impact of different dopants such as F4TCNQ, antimony pentachloride and iodine on the conductivities of the resulting doped COFs was studied. By using the strong organic acceptor F4TCNQ, a massive increase of the radical cation density (up to 0.5 radicals per unit cell) and long-term stable electrical conductivity as high as 3.67 S m-1 were achieved for the anisotropic transport in an oriented film, one of the highest for any doped COF to date. Interestingly, no significant differences between isotropic and anisotropic charge transport were found in films and pressed pellets. This work expands the list of possible building nodes for electrically conducting COFs from planar systems to twisted geometries. The achievement of high and stable electrical conductivity paves the way for possible applications of new COFs in organic (opto)electronics.

11.
Nanoscale ; 11(48): 23338-23345, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31793601

ABSTRACT

Covalent organic frameworks (COFs), consisting of covalently connected organic building units, combine attractive features such as crystallinity, open porosity and widely tunable physical properties. For optoelectronic applications, the incorporation of heteroatoms into a 2D COF has the potential to yield desired photophysical properties such as lower band gaps, but can also cause lateral offsets of adjacent layers. Here, we introduce dibenzo[g,p]chrysene (DBC) as a novel building block for the synthesis of highly crystalline and porous 2D dual-pore COFs showing interesting properties for optoelectronic applications. The newly synthesized terephthalaldehyde (TA), biphenyl (Biph), and thienothiophene (TT) DBC-COFs combine conjugation in the a,b-plane with a tight packing of adjacent layers guided through the molecular DBC node serving as specific docking site for successive layers. The resulting DBC-COFs exhibit a hexagonal dual-pore kagome geometry, which is comparable to COFs containing another molecular docking site, namely 4,4',4'',4'''-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA). In this context, the respective interlayer distances decrease from about 4.6 Å in ETTA-COFs to about 3.6 Å in DBC-COFs, leading to well-defined hexagonally faceted single crystals sized about 50-100 nm. The TT DBC-COF features broad light absorption covering large parts of the visible spectrum, while Biph DBC-COF shows extraordinary excited state lifetimes exceeding 10 ns. In combination with the large number of recently developed linear conjugated building blocks, the new DBC tetra-connected node is expected to enable the synthesis of a large family of highly correlated and ordered 2D COFs with promising optoelectronic properties.

12.
Beilstein J Nanotechnol ; 10: 1994-2003, 2019.
Article in English | MEDLINE | ID: mdl-31667047

ABSTRACT

We report on the synthesis of highly oriented and nanostructured metal-organic framework (MOF) films featuring extreme surface wetting properties. The Ni- and Co- derivatives of the metal-catecholate series (M-CAT-1) were synthesized as highly crystalline bulk materials and thin films. Oriented pillar-like nanostructured M-CAT-1 films exhibiting pronounced needle-like morphology on gold substrates were established by incorporating a crystallization promoter into the film synthesis. These nanostructured M-CAT-1 MOF films feature extreme wetting phenomena, specifically superhydrophilic and underwater superoleophobic properties with water and underwater oil-contact angles of 0° and up to 174°, respectively. The self-cleaning capability of the nanostructured, needle-like M-CAT-1 films was illustrated by measuring time-dependent oil droplet rolling-off a tilted surface. The deposition of the nanostructured Ni-CAT-1 film on a large glass substrate allowed for the realization of an efficient, transparent, antifog coating, enabling a clear view even at extreme temperature gaps up to ≈120 °C. This work illustrates the strong link between MOF film morphology and surface properties based on these framework materials.

13.
J Chem Inf Model ; 59(12): 5057-5064, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31722177

ABSTRACT

Charge transport in two zinc metal-organic frameworks (MOFs) has been investigated using periodic semiempirical molecular orbital calculations with the AM1* Hamiltonian. Restricted Hartree-Fock calculations underestimate the band gap using Koopmans theorem (ca. 2 eV compared to the experimental value of 2.8 eV). However, it almost doubles when the constraint on the wave function to remain spin-restricted is removed and the energies of the UHF Natural Orbitals are used. Charge-transport simulations using propagation of the electron- or hole-density in imaginary time allow charge-transport paths and mechanisms to be determined. The calculated relative mobilities in the directions of the three crystal axes agree with experimental expectations, but the absolute values are not reliable using the current technique. Hole-mobility along the crystal c-axis (along the metal stacks) is found to be 13 times higher in the zinc MOF with anthracene linker (Zn-ANMOF-74) than in the other directions, whereas the factor is far smaller (1.7) for electron mobility. Directional preferences are far less distinct in the equivalent structure with phenyl linkers (Zn-MOF-74). The imaginary-time simulation technique does not give quantitative mobilities. The simulations reveal a change in mechanism between the different directions: Coherent polaron migration is observed along the stacks but tunneling hops between them.


Subject(s)
Electrons , Metal-Organic Frameworks/chemistry , Quantum Theory , Models, Molecular , Molecular Conformation
14.
Nanoscale ; 11(43): 20949-20955, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31660561

ABSTRACT

Recently, a small group of metal-organic frameworks (MOFs) has been discovered featuring substantial charge transport properties and electrical conductivity, hence promising to broaden the scope of potential MOF applications in fields such as batteries, fuel cells and supercapacitors. In combination with light emission, electroactive MOFs are intriguing candidates for chemical sensing and optoelectronic applications. Here, we incorporated anthracene-based building blocks into the MOF-74 topology with five different divalent metal ions, that is, Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, resulting in a series of highly crystalline MOFs, coined ANMOF-74(M). This series of MOFs features substantial photoluminescence, with ANMOF-74(Zn) emitting across the whole visible spectrum. The materials moreover combine this photoluminescence with high surface areas and electrical conductivity. Compared to the original MOF-74 materials constructed from 2,5-dihydroxy terephthalic acid and the same metal ions Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, we observed a conductivity enhancement of up to six orders of magnitude. Our results point towards the importance of building block design and the careful choice of the embedded MOF topology for obtaining materials with desired properties such as photoluminescence and electrical conductivity.

15.
J Am Chem Soc ; 141(29): 11565-11571, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31305073

ABSTRACT

Covalent organic frameworks (COFs) are a highly versatile group of porous materials constructed from molecular building blocks, enabling deliberate tuning of their final bulk properties for a broad range of applications. Understanding their excited-state dynamics is essential for identifying suitable COF materials for applications in electronic devices such as transistors, photovoltaic cells, and water-splitting electrodes. Here, we report on the ultrafast excited-state dynamics of a series of fully conjugated two-dimensional (2D) COFs in which different molecular subunits are connected through imine bonds, using transient absorption spectroscopy. Although these COFs feature different topologies and chromophores, we find that excited states behave similarly across the series. We therefore present a unified model in which charges are generated through rapid singlet-singlet annihilation and show lifetimes of several tens of microseconds. These long-lived charges are of particular interest for optoelectronic devices, and our results point toward the importance of controlling the singlet-singlet annihilation step in order to increase the yield of separated charges.

16.
J Am Chem Soc ; 141(32): 12570-12581, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31251878

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.

17.
ACS Nano ; 13(6): 6711-6719, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31046244

ABSTRACT

Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.

18.
Chem Mater ; 31(8): 2707-2712, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31043765

ABSTRACT

In recent years, covalent organic frameworks (COFs) have attracted considerable attention due to their crystalline and porous nature, which positions them as intriguing candidates for diverse applications such as catalysis, sensing, or optoelectronics. The incorporation of dyes or semiconducting moieties into a rigid two-dimensional COF can offer emergent features such as enhanced light harvesting or charge transport. However, this approach can be challenging when dealing with dye molecules that exhibit a large aromatic backbone, since the steric demand of solubilizing side chains also needs to be integrated into the framework. Here, we report the successful synthesis of DPP2-HHTP-COF consisting of diketopyrrolopyrrole (DPP) diboronic acid and hexahydroxytriphenylene (HHTP) building blocks. The well-known boronate ester coupling motif guides the formation of a planar and rigid backbone and long-range molecular DPP stacks, resulting in a highly crystalline and porous material. DPP2-HHTP-COF exhibits excellent optical properties including strong absorption over the visible spectral range, broad emission into the NIR and a singlet lifetime of over 5 ns attributed to the formation of molecular stacks with J-type interactions between the DPP subcomponents in the COF. Electrical conductivity measurements of crystalline DPP2-HHTP-COF pellets revealed conductivity values of up to 10-6 S cm-1.

19.
Chemistry ; 24(42): 10601-10605, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29893500

ABSTRACT

Capture of pharmaceutical pollutants from water was studied using a novel fluorine-bearing covalent organic framework TpBD-(CF3 )2 , which showed ibuprofen adsorption capacity of 119 mg g-1 at neutral pH. This value is further enhanced at pH 2, highlighting the potential of this class of materials to serve as adsorbents even under harsh conditions. The adsorbed pharmaceutical can be recovered from TpBD-(CF3 )2 in high yield, offering the option of recycling both the adsorbent and the pharmaceutical. The high efficiency of ibuprofen capture as compared to other less lipophilic pharmaceuticals suggests that COFs can be pre-designed for selective capture of contaminants.

20.
J Am Chem Soc ; 140(14): 4812-4819, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29542320

ABSTRACT

Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...