Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Cytometry A ; 105(5): 323-331, 2024 05.
Article in English | MEDLINE | ID: mdl-38420869

ABSTRACT

Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.


Subject(s)
Lysosomes , Lysosomes/metabolism , Animals , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/pathology , Mucopolysaccharidosis III/genetics , Quantitative Phase Imaging
2.
Cell Death Differ ; 31(2): 217-238, 2024 02.
Article in English | MEDLINE | ID: mdl-38238520

ABSTRACT

Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.


Subject(s)
Calcineurin , Drosophila Proteins , Animals , Calcineurin/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Mitophagy/genetics , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Drosophila/metabolism , Protein Serine-Threonine Kinases/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
3.
PLoS Biol ; 21(3): e3002034, 2023 03.
Article in English | MEDLINE | ID: mdl-36888606

ABSTRACT

The stress-responsive transcription factor EB (TFEB) is a master controller of lysosomal biogenesis and autophagy and plays a major role in several cancer-associated diseases. TFEB is regulated at the posttranslational level by the nutrient-sensitive kinase complex mTORC1. However, little is known about the regulation of TFEB transcription. Here, through integrative genomic approaches, we identify the immediate-early gene EGR1 as a positive transcriptional regulator of TFEB expression in human cells and demonstrate that, in the absence of EGR1, TFEB-mediated transcriptional response to starvation is impaired. Remarkably, both genetic and pharmacological inhibition of EGR1, using the MEK1/2 inhibitor Trametinib, significantly reduced the proliferation of 2D and 3D cultures of cells displaying constitutive activation of TFEB, including those from a patient with Birt-Hogg-Dubé (BHD) syndrome, a TFEB-driven inherited cancer condition. Overall, we uncover an additional layer of TFEB regulation consisting in modulating its transcription via EGR1 and propose that interfering with the EGR1-TFEB axis may represent a therapeutic strategy to counteract constitutive TFEB activation in cancer-associated conditions.


Subject(s)
Autophagy , Lysosomes , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy/genetics , Lysosomes/metabolism , Cell Proliferation/genetics , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
4.
Sci Adv ; 9(1): eade1694, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36608116

ABSTRACT

Spinal and bulbar muscular atrophy is caused by polyglutamine (polyQ) expansions in androgen receptor (AR), generating gain-of-function toxicity that may involve phosphorylation. Using cellular and animal models, we investigated what kinases and phosphatases target polyQ-expanded AR, whether polyQ expansions modify AR phosphorylation, and how this contributes to neurodegeneration. Mass spectrometry showed that polyQ expansions preserve native phosphorylation and increase phosphorylation at conserved sites controlling AR stability and transactivation. In small-molecule screening, we identified that CDC25/CDK2 signaling could enhance AR phosphorylation, and the calcium-sensitive phosphatase calcineurin had opposite effects. Pharmacologic and genetic manipulation of these kinases and phosphatases modified polyQ-expanded AR function and toxicity in cells, flies, and mice. Ablation of CDK2 reduced AR phosphorylation in the brainstem and restored expression of Myc and other genes involved in DNA damage, senescence, and apoptosis, indicating that the cell cycle-regulated kinase plays more than a bystander role in SBMA-vulnerable postmitotic cells.


Subject(s)
Calcium , Receptors, Androgen , Mice , Animals , Receptors, Androgen/chemistry , Gain of Function Mutation , Cyclin-Dependent Kinases/genetics , Phosphoric Monoester Hydrolases/genetics
5.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35929194

ABSTRACT

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Subject(s)
Lysosomal Storage Diseases , Mucolipidoses , Neuronal Ceroid-Lipofuscinoses , Animals , Child, Preschool , Humans , Lysosomes/metabolism , Mice , Mucolipidoses/genetics , Mucolipidoses/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Quality of Life
6.
Mol Neurobiol ; 59(8): 5000-5023, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35665902

ABSTRACT

The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Microphthalmos , Animals , Humans , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/metabolism , Lysosomes/metabolism , Mammals/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmos/metabolism
7.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162981

ABSTRACT

Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.


Subject(s)
Mucopolysaccharidoses , Mucopolysaccharidosis I , Flavonoids/pharmacology , Gene Expression , Genistein/pharmacology , Glycosaminoglycans/metabolism , Humans , Kaempferols , Oligonucleotide Array Sequence Analysis
8.
Nat Commun ; 13(1): 536, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087090

ABSTRACT

CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Phosphofructokinase-2/metabolism , Animals , Autophagy , Child, Preschool , Disease Models, Animal , Female , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Male , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Neuronal Ceroid-Lipofuscinoses/genetics , Neurons/metabolism , Phosphofructokinase-2/genetics , Up-Regulation
9.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34411438

ABSTRACT

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Drug Repositioning , Humans , Lysosomes , Membrane Glycoproteins/genetics , Mice , Molecular Chaperones/genetics , Neuronal Ceroid-Lipofuscinoses/drug therapy , Phenotype , Tamoxifen/pharmacology
10.
Int Rev Cell Mol Biol ; 362: 141-170, 2021.
Article in English | MEDLINE | ID: mdl-34253294

ABSTRACT

Lysosomal calcium is emerging as a modulator of autophagy and lysosomal compartment, an obligatory partner to complete the autophagic pathway. A variety of specific signals such as nutrient deprivation or oxidative stress can trigger lysosomal calcium-mediated nuclear translocation of the transcription factor EB (TFEB), a master regulator of global lysosomal function. Also, lysosomal calcium can promote the formation of autophagosome vesicles (AVs) by a mechanism that requires the production of the phosphoinositide PI3P by the VPS34 autophagic complex and the activation of the energy-sensing kinase AMPK. Additionally, lysosomal calcium plays a role in membrane fusion and fission events involved in cellular processes such as endocytic maturation, autophagosome-lysosome fusion, lysosomal exocytosis, and lysosomal reformation upon autophagy completion. Lysosomal calcium-dependent functions are defective in cellular and animal models of the non-selective cation channel TRPML1, whose mutations in humans cause the neurodegenerative lysosomal storage disease mucolipidosis type IV (MLIV). Lysosomal calcium is not only acting as a positive regulator of autophagy, but it is also responsible for turning-off this process through the reactivation of the mTOR kinase during prolonged starvation. More recently, it has been described the role of lysosomal calcium on an elegant sequence of intracellular signaling events such as membrane repair, lysophagy, and lysosomal biogenesis upon the induction of different grades of lysosomal membrane damage. Here, we will discuss these novel findings that re-define the importance of the lysosome and lysosomal calcium signaling at regulating cellular metabolism.


Subject(s)
Autophagy , Calcium/metabolism , Lysosomes/metabolism , Animals , Calcium Channels/metabolism , Endosomes/metabolism , Humans , Models, Biological
11.
Stem Cell Reports ; 16(5): 1381-1390, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33891873

ABSTRACT

Controlling cell fate has great potential for regenerative medicine, drug discovery, and basic research. Although transcription factors are able to promote cell reprogramming and transdifferentiation, methods based on their upregulation often show low efficiency. Small molecules that can facilitate conversion between cell types can ameliorate this problem working through safe, rapid, and reversible mechanisms. Here, we present DECCODE, an unbiased computational method for identification of such molecules based on transcriptional data. DECCODE matches a large collection of drug-induced profiles for drug treatments against a large dataset of primary cell transcriptional profiles to identify drugs that either alone or in combination enhance cell reprogramming and cell conversion. Extensive validation in the context of human induced pluripotent stem cells shows that DECCODE is able to prioritize drugs and drug combinations enhancing cell reprogramming. We also provide predictions for cell conversion with single drugs and drug combinations for 145 different cell types.


Subject(s)
Cellular Reprogramming , Small Molecule Libraries/pharmacology , Algorithms , Animals , Automation , Cellular Reprogramming/drug effects , Cluster Analysis , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Reproducibility of Results
12.
EMBO Mol Med ; 13(2): e12836, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33459519

ABSTRACT

Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.


Subject(s)
Lysosomal Storage Diseases , Metabolic Diseases , Autophagy , Humans , Lysosomes
13.
iScience ; 23(11): 101691, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33163944

ABSTRACT

The transcription factor EB (TFEB) has emerged as a master regulator of lysosomal biogenesis, exocytosis, and autophagy, promoting the clearance of substrates stored in cells. c-Abl is a tyrosine kinase that participates in cellular signaling in physiological and pathophysiological conditions. In this study, we explored the connection between c-Abl and TFEB. Here, we show that under pharmacological and genetic c-Abl inhibition, TFEB translocates into the nucleus promoting the expression of its target genes independently of its well-known regulator, mammalian target of rapamycin complex 1. Active c-Abl induces TFEB phosphorylation on tyrosine and the inhibition of this kinase promotes lysosomal biogenesis, autophagy, and exocytosis. c-Abl inhibition in Niemann-Pick type C (NPC) models, a neurodegenerative disease characterized by cholesterol accumulation in lysosomes, promotes a cholesterol-lowering effect in a TFEB-dependent manner. Thus, c-Abl is a TFEB regulator that mediates its tyrosine phosphorylation, and the inhibition of c-Abl activates TFEB promoting cholesterol clearance in NPC models.

14.
Cancers (Basel) ; 12(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155756

ABSTRACT

Tumor resistance to chemotherapy represents an important challenge in modern oncology. Although platinum (Pt)-based drugs have demonstrated excellent therapeutic potential, their effectiveness in a wide range of tumors is limited by the development of resistance mechanisms. One of these mechanisms includes increased cisplatin sequestration/efflux by the copper-transporting ATPase, ATP7B. However, targeting ATP7B to reduce Pt tolerance in tumors could represent a serious risk because suppression of ATP7B might compromise copper homeostasis, as happens in Wilson disease. To circumvent ATP7B-mediated Pt tolerance we employed a high-throughput screen (HTS) of an FDA/EMA-approved drug library to detect safe therapeutic molecules that promote cisplatin toxicity in the IGROV-CP20 ovarian carcinoma cells, whose resistance significantly relies on ATP7B. Using a synthetic lethality approach, we identified and validated three hits (Tranilast, Telmisartan, and Amphotericin B) that reduced cisplatin resistance. All three drugs induced Pt-mediated DNA damage and inhibited either expression or trafficking of ATP7B in a tumor-specific manner. Global transcriptome analyses showed that Tranilast and Amphotericin B affect expression of genes operating in several pathways that confer tolerance to cisplatin. In the case of Tranilast, these comprised key Pt-transporting proteins, including ATOX1, whose suppression affected ability of ATP7B to traffic in response to cisplatin. In summary, our findings reveal Tranilast, Telmisartan, and Amphotericin B as effective drugs that selectively promote cisplatin toxicity in Pt-resistant ovarian cancer cells and underscore the efficiency of HTS strategy for identification of biosafe compounds, which might be rapidly repurposed to overcome resistance of tumors to Pt-based chemotherapy.

15.
Autophagy ; 16(2): 195-202, 2020 02.
Article in English | MEDLINE | ID: mdl-31841063

ABSTRACT

Over the past 20 years (1999-2019), we have witnessed a rapid increase in publications involving chemical macroautophagy/autophagy modulators. However, an overview of the methodologies used in these studies is still lacking, and methodology flaws are frequently observed in some reports. To provide an objective and quantitative analysis of studies involving autophagy modulators, we present an Autophagy Modulator Scoring System (AMSS), which is designed to evaluate methodological integrity. AMSS-A includes the autophagy characterization by 4 aspects, namely, autophagosome quantification, autophagy-related biochemical changes, autophagy substrate degradation, and autophagic flux. AMSS-B contains the pharmacological and functional characteristics of chemical autophagy modulators, including lysosomal function, drug targets, autophagy-dependent pharmacological effects, and validation in multiple cell lines and in vivo models. Our analysis shows that of the 385 studies reporting chemical autophagy modulators, only 142 single studies had examined all 4 aspects of autophagy characterization in AMSS-A, and only 10 out of 142 studies had fulfilled all the AMSS criteria in a single study. A comprehensive analysis of the methodologies used in all the studies was made, along with a summary of studies that demonstrated the highest methodological integrity based on AMSS ranking. To test the reliability of the AMSS, a co-efficiency analysis of scores and co-citation values in the co-citation network was performed, and a significant co-efficiency was obtained. Collectively, AMSS provides insight into the methodological integrity of autophagy modulators studies and also offers a user-friendly toolkit to help choose appropriate assays to characterize autophagy modulators.Abbreviations: 3-MA: 3-methyladenine; AMSS: Autophagy Modulator Scoring System; ATG: autophagy-related; BAF: bafilomycin A1; BECN1: beclin 1; CQ: chloroquine; GFP: green fluorescent protein; LC3: microtubule associated protein 1 light chain 3; mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate.


Subject(s)
Autophagy , Research Design , Animals , Cell Line , Humans , Publications
16.
Methods Mol Biol ; 1925: 143-144, 2019.
Article in English | MEDLINE | ID: mdl-30674023

ABSTRACT

Emerging experimental evidences indicate that the lysosome can trigger a calcium signaling, via TRPML1/calcineurin/TFEB pathway, that promotes lysosomal exocytosis and clearance of lysosomal accumulation in various cellular models of lysosomal storage disorders (LSDs). Here, we described methods to determine TFEB activation and lysosomal exocytosis that may represent innovative tools to study lysosomal function and to develop novel therapeutic approaches to promote clearance in LSDs.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Exocytosis , Lysosomes/metabolism , Signal Transduction , Transient Receptor Potential Channels/metabolism , Animals , Autophagy , Calcium/metabolism , Humans , Lysosomal Storage Diseases/metabolism
17.
Methods Mol Biol ; 1925: 145-155, 2019.
Article in English | MEDLINE | ID: mdl-30674024

ABSTRACT

Lysosomes are emerging as calcium store organelles that can modulate various intracellular processes such as the regulation of nutrient signaling through the activation of TFEB, a master gene for lysosomal function, or very specialized functions like lysosomal exocytosis. Here, we describe two different techniques that can be used to study these processes. In the case report, we described two studies where these methodologies allowed us to unravel the role of calcineurin in the dephosphorylation of TFEB as well as the involvement of TFEB in lysosomal exocytosis, respectively.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Calcineurin/metabolism , Calcium/metabolism , Lysosomes/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cations, Divalent/metabolism , Cell Culture Techniques/methods , Cell Line , Exocytosis , HeLa Cells , Humans , Immunoblotting/methods , Immunoprecipitation/methods , Lysosomes/genetics , Mice , Phosphorylation , Transfection/methods
18.
J Cell Biol ; 218(3): 783-797, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30659099

ABSTRACT

Phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide with key roles in the Golgi complex, is made by Golgi-associated phosphatidylinositol-4 kinases and consumed by the 4-phosphatase Sac1 that, instead, is an ER membrane protein. Here, we show that the contact sites between the ER and the TGN (ERTGoCS) provide a spatial setting suitable for Sac1 to dephosphorylate PI4P at the TGN. The ERTGoCS, though necessary, are not sufficient for the phosphatase activity of Sac1 on TGN PI4P, since this needs the phosphatidyl-four-phosphate-adaptor-protein-1 (FAPP1). FAPP1 localizes at ERTGoCS, interacts with Sac1, and promotes its in-trans phosphatase activity in vitro. We envision that FAPP1, acting as a PI4P detector and adaptor, positions Sac1 close to TGN domains with elevated PI4P concentrations allowing PI4P consumption. Indeed, FAPP1 depletion induces an increase in TGN PI4P that leads to increased secretion of selected cargoes (e.g., ApoB100), indicating that FAPP1, by controlling PI4P levels, acts as a gatekeeper of Golgi exit.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Endoplasmic Reticulum/genetics , Golgi Apparatus/genetics , HeLa Cells , Hep G2 Cells , Humans , Membrane Proteins/genetics , Mice , Phosphatidylinositol Phosphates/genetics
19.
Autophagy ; 15(1): 151-164, 2019 01.
Article in English | MEDLINE | ID: mdl-30145926

ABSTRACT

The mechanistic target of rapamycin kinase complex 1 (MTORC1) is a central cellular kinase that integrates major signaling pathways, allowing for regulation of anabolic and catabolic processes including macroautophagy/autophagy and lysosomal biogenesis. Essential to these processes is the regulatory activity of TFEB (transcription factor EB). In a regulatory feedback loop modulating transcriptional levels of RRAG/Rag GTPases, TFEB controls MTORC1 tethering to membranes and induction of anabolic processes upon nutrient replenishment. We now show that TFEB promotes expression of endocytic genes and increases rates of cellular endocytosis during homeostatic baseline and starvation conditions. TFEB-mediated endocytosis drives assembly of the MTORC1-containing nutrient sensing complex through the formation of endosomes that carry the associated proteins RRAGD, the amino acid transporter SLC38A9, and activate AKT/protein kinase B (AKT p-T308). TFEB-induced signaling endosomes en route to lysosomes are induced by amino acid starvation and are required to dissociate TSC2, re-tether and activate MTORC1 on endolysosomal membranes. This study characterizes TFEB-mediated endocytosis as a critical process leading to activation of MTORC1 and autophagic function, thus identifying the importance of the dynamic endolysosomal system in cellular clearance. Abbreviations: CAD: central adrenergic tyrosine hydroxylase-expressing-a-differentiated; ChIP-seq: chromosome immunoprecipitation sequencing; DAPI: 4',6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide; EDTA: ethylenediaminetetraacetic acid; EEA1: early endosomal antigen 1; EGF: epidermal growth factor; FBS: fetal bovine serum; GFP: green fluorescent protein; GTPase: guanosine triphosphatase; HEK293T: human embryonic kidney 293 cells expressing a temperature-sensitive mutant of the SV40 large T antigen; LAMP: lysosomal-associated membrane protein; LYNUS: lysosomal nutrient-sensing complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha/beta; MTOR: mechanistic target of rapamycin kinase; MTORC: mechanistic target of rapamycin kinase complex; OE: overexpression; PH: pleckstrin homology; PtdIns(3,4,5)P3: phosphatidylinositol 3,4,5-trisphosphate; RRAGD: Ras related GTPase binding D; RHEB: Ras homolog enriched in brain; SLC38A9: solute carrier family 38 member 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; TSC2: tuberous sclerosis 2; TMR: tetramethylrhodamine; ULK1: unc-51 like kinase 1; WT: wild type.


Subject(s)
Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Endocytosis/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Caloric Restriction , Endocytosis/physiology , HEK293 Cells , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Signal Transduction/genetics
20.
Lancet Neurol ; 18(1): 107-116, 2019 01.
Article in English | MEDLINE | ID: mdl-30470609

ABSTRACT

Treatment of the neuronal ceroid lipofuscinoses, also known as Batten disease, is at the start of a new era because of diagnostic and therapeutic advances relevant to this group of inherited neurodegenerative and life-limiting disorders that affect children. Diagnosis has improved with the use of comprehensive DNA-based tests that simultaneously screen for many genes. The identification of disease-causing mutations in 13 genes provides a basis for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, and for the development of targeted therapies. These targeted therapies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. Such therapeutic developments have the potential to enable earlier diagnosis and better targeted therapeutic management. The first approved treatment is an intracerebroventricularly administered enzyme for neuronal ceroid lipofuscinosis type 2 disease that delays symptom progression. Efforts are underway to make similar progress for other forms of the disorder.


Subject(s)
Enzyme Replacement Therapy , Genetic Therapy/methods , Neuronal Ceroid-Lipofuscinoses/therapy , Disease Progression , Humans , Mutation , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...