Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 56(9): 4671-5, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22710118

ABSTRACT

Murine models of infection were used to study the effect of linezolid on the virulence of Gram-negative bacteria and to assess potential pharmacodynamic interactions with ciprofloxacin in the treatment of these infections, prompted by observations from a recent clinical trial. Naive and immunosuppressed mice were challenged with Klebsiella pneumoniae 53A1109, K. pneumoniae GC6658, and Pseudomonas aeruginosa UC12120 in acute sepsis and pulmonary infection models, using different serial dilutions of these pathogens (groups of 8 animals each). Linezolid (100 mg/kg/dose) was administered orally at 0.5 and 4.0 h postchallenge in the sepsis model and at 4 h postchallenge followed by 2 days of twice-daily treatment in the pulmonary model. Further, ciprofloxacin alone and in combination with oral linezolid was investigated in the sepsis model. Survival was assessed for 4 and 10 days postchallenge in the systemic and respiratory models, respectively. The data were fitted to a nonlinear regression analysis to determine 50% lethal doses (LD(50)s) and 50% protective doses (PD(50)s). A clinically relevant, high-dose regimen of linezolid had no significant effect on LD(50) in these models. This lack of effect was independent of immune status. A combination of oral ciprofloxacin with linezolid yielded lower PD(50)s than oral ciprofloxacin alone (ciprofloxacin in combination, 8.4 to 32.7 mg/kg; oral ciprofloxacin, 39.4 to 88.3 mg/kg). Linezolid did not improve the efficacy of subcutaneous ciprofloxacin (ciprofloxacin in combination, 2.0 to 2.4 mg/kg; subcutaneous ciprofloxacin, 2.0 to 2.8 mg/kg). In conclusion, linezolid does not seem to potentiate infections caused by Gram-negative pathogens or to interact antagonistically with ciprofloxacin.


Subject(s)
Acetamides/administration & dosage , Anti-Bacterial Agents/administration & dosage , Ciprofloxacin/administration & dosage , Klebsiella Infections/drug therapy , Oxazolidinones/administration & dosage , Pseudomonas Infections/drug therapy , Sepsis/drug therapy , Animals , Drug Administration Routes , Drug Administration Schedule , Drug Interactions , Female , Immunocompromised Host , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella Infections/mortality , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Lethal Dose 50 , Linezolid , Mice , Models, Animal , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/mortality , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Sepsis/immunology , Sepsis/microbiology , Sepsis/mortality , Survival Rate , Treatment Outcome
2.
Bioorg Med Chem Lett ; 19(16): 4857-62, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19596574

ABSTRACT

A series of bezimidazole-isatin oximes were prepared and profiled as inhibitors of respiratory syncytial virus (RSV) replication in cell culture. Structure-activity relationship studies were directed toward optimization of antiviral activity, cell permeability and metabolic stability in human liver micorosomes (HLM). Parallel combinatorial synthetic chemistry was employed to functionalize isatin oximes via O-alkylation which quickly identified a subset of small, lipophilic substituents that established good potency for the series. Further optimization of the isatin oxime derivatives focused on introduction of nitrogen atoms to the isatin phenyl ring to provide a series of aza-isatin oximes with significantly improved PK properties. Several aza-isatin oximes analogs displayed targeted metabolic stability in HLM and permeability across a confluent monolayer of CaCo-2 cells. These studies identified several compounds, including 18i, 18j and 18n that demonstrated antiviral activity in the BALB/c mouse model of RSV infection following oral dosing.


Subject(s)
Antiviral Agents/chemistry , Isatin/chemistry , Oximes/chemistry , Respiratory Syncytial Viruses/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 17(17): 4784-90, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17616396

ABSTRACT

The effect of structural variation of the benzimidazol-2-one ring of RSV fusion inhibitors related to BMS-433771 (1) was examined in conjunction with side chain modifications and the introduction of an aminomethyl substituent at the 5-position of the core benzimidazole moiety. Replacement of the benzimidazol-2-one moiety with benzoxazole, oxindole, quinoline-2-one, quinazolin-2,4-dione and benzothiazine derivatives provided a series of potent RSV fusion inhibitors 4. However, the intrinsic potency of 6,6-fused ring systems was generally less than that of comparably substituted 5,6-fused heterocycles of the type found in BMS-433771 (1). The introduction of an aminomethyl substituent to the benzimidazole ring enhanced antiviral activity in the 6,6-fused ring systems.


Subject(s)
Antiviral Agents/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/metabolism , Viral Fusion Proteins/antagonists & inhibitors , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Chemistry, Pharmaceutical/methods , Drug Design , Electrons , Humans , Inhibitory Concentration 50 , Models, Chemical , Models, Molecular , Molecular Conformation
4.
Diagn Microbiol Infect Dis ; 58(1): 59-65, 2007 May.
Article in English | MEDLINE | ID: mdl-17300898

ABSTRACT

The ability of enterococci to acquire resistance to antibiotics and form biofilms in vivo makes these infections, endocarditis in particular, especially difficult to treat. A collection of clinical enterococcal isolates was screened for the presence of various virulence determinants and in an in vitro assay for biofilm formation. Isolates were chosen for the presence or absence of the genes for Esp and gelatinase and different in vitro biofilm phenotypes, and were evaluated in a rat model of endocarditis; all colonized vegetations to similar degrees. Treatment with vancomycin resulted in a 2.7-log reduction in colony-forming unit (CFU) in vegetations for an esp(+)/gel(-) strain, compared with no reduction in CFU for an esp(+)/gel(+) or an esp(-)/gel(-) isolate. These results suggest that although there may not be an absolute role for individual virulence determinants in infectivity, combinations of factors may play a role in allowing a biofilm infection to be more resistant to therapy.


Subject(s)
Bacterial Proteins/genetics , Biofilms/drug effects , Endocarditis, Bacterial/drug therapy , Enterococcus faecalis/pathogenicity , Vancomycin Resistance , Animals , Aortic Valve/microbiology , Biofilms/growth & development , Colony Count, Microbial , Endocarditis, Bacterial/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/growth & development , Gelatinases/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Male , Membrane Proteins/genetics , Rats , Rats, Sprague-Dawley , Vancomycin/pharmacology , Vancomycin/therapeutic use , Vancomycin Resistance/genetics , Virulence/genetics
5.
Bioorg Med Chem Lett ; 17(4): 895-901, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17169560

ABSTRACT

A series of benzimidazole-based inhibitors of respiratory syncytial virus (RSV) fusion were optimized for antiviral potency, membrane permeability and metabolic stability in human liver microsomes. 1-Cyclopropyl-1,3-dihydro-3-[[1-(4-hydroxybutyl)-1H-benzimidazol-2-yl]methyl]-2H-imidazo[4,5-c]pyridin-2-one (6m, BMS-433771) was identified as a potent RSV inhibitor demonstrating good bioavailability in the mouse, rat, dog and cynomolgus monkey that demonstrated antiviral activity in the BALB/c and cotton rat models of infection following oral administration.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Animals , Antiviral Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Biological Availability , Caco-2 Cells , Chemical Phenomena , Chemistry, Physical , Cytopathogenic Effect, Viral/drug effects , Dogs , Half-Life , Humans , In Vitro Techniques , Macaca fascicularis , Mice , Mice, Inbred BALB C , Microsomes, Liver/drug effects , Rats , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Sigmodontinae , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 16(5): 1115-22, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16368233

ABSTRACT

The introduction of acidic and basic functionality into the side chains of respiratory syncytial virus (RSV) fusion inhibitors was examined in an effort to identify compounds suitable for evaluation in vivo in the cotton rat model of RSV infection following administration as a small particle aerosol. The acidic compounds 2r, 2u, 2v, 2w, 2z, and 2aj demonstrated potent antiviral activity in cell culture and exhibited efficacy in the cotton rat comparable to ribavirin. In a BALB/c mouse model, the oxadiazolone 2aj reduced virus titers following subcutaneous dosing, whilst the ester 2az and amide 2aab exhibited efficacy following oral administration. These results established the potential of this class of RSV fusion inhibitors to interfere with infection in vivo following topical or systemic administration.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Membrane Fusion/drug effects , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/physiology , Water/chemistry , Amines/chemistry , Animals , Antiviral Agents/adverse effects , Antiviral Agents/chemical synthesis , Benzimidazoles/adverse effects , Benzimidazoles/chemical synthesis , Mice , Molecular Structure , Rats , Sigmodontinae , Solubility , Structure-Activity Relationship
7.
Antimicrob Agents Chemother ; 48(7): 2448-54, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15215093

ABSTRACT

BMS-433771 is a potent inhibitor of respiratory syncytial virus (RSV) replication in vitro. Mechanism of action studies have demonstrated that BMS-433771 halts virus entry through inhibition of F protein-mediated membrane fusion. BMS-433771 also exhibited in vivo efficacy following oral administration in a mouse model of RSV infection (C. Cianci, K. Y. Yu, K. Combrink, N. Sin, B. Pearce, A. Wang, R. Civiello, S. Voss, G. Luo, K. Kadow, E. Genovesi, B. Venables, H. Gulgeze, A. Trehan, J. James, L. Lamb, I. Medina, J. Roach, Z. Yang, L. Zadjura, R. Colonno, J. Clark, N. Meanwell, and M. Krystal, Antimicrob. Agents Chemother. 48:413-422, 2004). In this report, the in vivo efficacy of BMS-433771 against RSV was further examined in the BALB/c mouse and cotton rat host models of infection. By using the Long strain of RSV, prophylactic efficacy via oral dosing was observed in both animal models. A single oral dose, administered 1 h prior to intranasal RSV inoculation, was as effective against infection as a 4-day b.i.d. dosing regimen in which the first oral dose was given 1 h prior to virus inoculation. Results of dose titration experiments suggested that RSV infection was more sensitive to inhibition by BMS-433771 treatment in the BALB/c mouse host than in the cotton rat. This was reflected by the pharmacokinetic and pharmacodynamic analysis of the efficacy data, where the area under the concentration-time curve required to achieve 50% of the maximum response was approximately 7.5-fold less for mice than for cotton rats. Inhibition of RSV by BMS-433771 in the mouse is the result of F1-mediated inhibition, as shown by the fact that a virus selected for resistance to BMS-433771 in vitro and containing a single amino acid change in the F1 region was also refractory to treatment in the mouse host. BMS-433771 efficacy against RSV infection was also demonstrated for mice that were chemically immunosuppressed by cyclophosphamide treatment, indicating that compound inhibition of the virus did not require an active host immune response.


Subject(s)
Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Animals , Antiviral Agents/pharmacokinetics , Area Under Curve , Benzimidazoles/pharmacokinetics , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Rats , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Sigmodontinae , Viral Fusion Proteins/antagonists & inhibitors
8.
Antimicrob Agents Chemother ; 48(2): 413-22, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14742189

ABSTRACT

BMS-433771 was found to be a potent inhibitor of respiratory syncytial virus (RSV) replication in vitro. It exhibited excellent potency against multiple laboratory and clinical isolates of both group A and B viruses, with an average 50% effective concentration of 20 nM. Mechanism-of-action studies demonstrated that BMS-433771 inhibits the fusion of lipid membranes during both the early virus entry stage and late-stage syncytium formation. After isolation of resistant viruses, resistance was mapped to a series of single amino acid mutations in the F1 subunit of the fusion protein. Upon oral administration, BMS-433771 was able to reduce viral titers in the lungs of mice infected with RSV. This new class of orally active RSV fusion inhibitors offers potential for clinical development.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Respiratory Syncytial Viruses/drug effects , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Chromosome Mapping , Cloning, Molecular , DNA, Complementary/genetics , Drug Resistance, Viral , Genotype , Giant Cells/pathology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/genetics , Temperature , Viral Fusion Proteins/biosynthesis , Viral Plaque Assay , Viral Proteins/biosynthesis
9.
Antimicrob Agents Chemother ; 46(4): 971-6, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11897577

ABSTRACT

The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) with decreased susceptibility to vancomycin has intensified the search for alternative therapies for the treatment of infections caused by this organism. One approach has been to identify a beta-lactam with improved affinity for PBP 2a, the target enzyme responsible for methicillin resistance in staphylococci. BMS-247243 is such a candidate, with MICs that inhibit 90% of isolates tested (MIC(90)s) of 4, 2, and 8 microg/ml for methicillin-resistant strains of S. aureus, S. epidermidis, and S. haemolyticus, respectively, as determined on plates with Mueller-Hinton agar and 2% NaCl. The BMS-247243 MICs for MRSA were minimally affected by the susceptibility testing conditions (inoculum size, prolonged incubation, addition of salt to the test medium) or by staphylococcal beta-lactamases. BMS-247243 MIC(90)s for methicillin-susceptible staphylococcal species ranged from < or = 0.25 to 1 microg/ml. The BMS-247243 MIC(90) for beta-lactamase-producing S. aureus strains was fourfold higher than that for beta-lactamase-nonproducing strains. BMS-247243 is hydrolyzed by staphylococcal beta-lactamases at 4.5 to 26.2% of the rates measured for cephaloridine. The affinity of BMS-247243 for PBP 2a was >100-fold better than that of methicillin or cefotaxime. BMS-247243 is bactericidal for MRSA, killing the bacteria twice as fast as vancomycin. These in vitro activities of BMS-247243 correlated with its in vivo efficacy against infections in animals, including the neutropenic murine thigh and rabbit endocarditis models involving MRSA strains. In conclusion, BMS-247243 has in vitro and in vivo activities against methicillin-resistant staphylococci and thus may prove to be useful in the treatment of infections caused by these multidrug-resistant organisms.


Subject(s)
Bacterial Proteins , Carrier Proteins , Methicillin Resistance/physiology , Morpholines/pharmacology , Morpholines/therapeutic use , Muramoylpentapeptide Carboxypeptidase , Pyridines/pharmacology , Pyridines/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Cyclophosphamide/pharmacology , Endocarditis, Bacterial/drug therapy , Endocarditis, Bacterial/microbiology , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Hydrolysis , Immunosuppression Therapy , Immunosuppressive Agents/pharmacology , Kinetics , Methicillin Resistance/genetics , Mice , Microbial Sensitivity Tests , Morpholines/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Muscle, Skeletal/microbiology , Penicillin-Binding Proteins , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Protein Binding , Pyridines/metabolism , Rabbits , Staphylococcal Infections/microbiology , Vancomycin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...