Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 10(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998242

ABSTRACT

A conditioned reinforcer is a stimulus that acquired its effectiveness to increase and maintain a target behavior on the basis of the individual's history-e.g., pairings with other reinforcers. This systematic review synthesized findings on conditioned reinforcement in the applied animal training field. Thirty-four studies were included in the review and six studies were eligible for a meta-analysis on the effectiveness of behavioral interventions that implemented conditioned reinforcement (e.g., clicks, spoken word, or whistles paired with food). The majority of studies investigated conditioned reinforcement with dogs (47%, n = 16) and horses (30%, n = 10) implementing click-food pairings. All other species (cats, cattle, fish, goats, and monkeys) were equally distributed across types of conditioned (e.g., clicker or spoken word) and unconditioned reinforcers (e.g., food, water, or tactile). A meta-analysis on the effectiveness of conditioned reinforcement in behavioral interventions found a medium summary effect size (Tau-U 0.77; CI95% = [0.53, 0.89]), when comparing baseline, where no training was done, and treatment levels. Moderators of conditioned reinforcement effectiveness were species (e.g., horses) and research design (e.g., multiple-baseline designs). The small number of intervention-focused studies available limits the present findings and highlights the need for more systematic research into the effectiveness of conditioned reinforcement across species.

2.
PeerJ ; 5: e4009, 2017.
Article in English | MEDLINE | ID: mdl-29152417

ABSTRACT

Despite step-down inhibitory avoidance procedures that have been widely implemented in rats and mice to study learning and emotion phenomena, performance of other species in these tasks has received less attention. The case of the Mongolian gerbil is of relevance considering the discrepancies in the parameters of the step-down protocols implemented, especially the wide range of foot-shock intensities (i.e., 0.4-4.0 mA), and the lack of information on long-term performance, extinction effects, and behavioral patterning during these tasks. Experiment 1 aimed to (a) characterize gerbils' acquisition, extinction, and steady-state performance during a multisession (i.e., extended) step-down protocol adapted for implementation in a commercially-available behavioral package (Video Fear Conditioning System-MED Associates Fairfax, VT, USA), and (b) compare gerbils' performance in this task with two shock intensities - 0.5 vs. 1.0 mA-considered in the low-to-mid range. Results indicated that the 1.0 mA protocol produced more reliable and clear evidence of avoidance learning, extinction, and reacquisition in terms of increments in freezing and on-platform time as well as suppression of platform descent. Experiment 2 aimed to (a) assess whether an alternate protocol consisting of a random delivery of foot shocks could replicate the effects of Experiment 1 and (b) characterize gerbils' exploratory behavior during the step-down task (jumping, digging, rearing, and probing). Random shocks did not reproduce the effects observed with the first protocol. The data also indicated that a change from random to response-dependent shocks affects (a) the length of each visit to the platform, but not the frequency of platform descends or freezing time, and (b) the patterns of exploratory behavior, namely, suppression of digging and rearing, as well as increments in probing and jumping. Overall, the study demonstrated the feasibility of the extended step-down protocol for studying steady performance, extinction, and reacquisition of avoidance behavior in gerbils, which could be easily implemented in a commercially available system. The observation that 1.0 mA shocks produced a clear and consistent avoidance behavior suggests that implementation of higher intensities is unnecessary for reproducing aversive-conditioning effects in this species. The observed patterning of freezing, platform descents, and exploratory responses produced by the change from random to periodic shocks may relate to the active defensive system of the gerbil. Of special interest is the probing behavior, which could be interpreted as risk assessment and has not been reported in other rodent species exposed to step-down and similar tasks.

SELECTION OF CITATIONS
SEARCH DETAIL
...