Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38798332

ABSTRACT

Neuronal intrinsic excitability is a mechanism implicated in learning and memory that is distinct from synaptic plasticity. Prior work in songbirds established that intrinsic properties (IPs) of premotor basal-ganglia-projecting neurons (HVC X ) relate to learned song. Here we find that temporal song structure is related to specific HVC X IPs: HVC X from birds who sang longer songs including longer invariant vocalizations (harmonic stacks) had IPs that reflected increased post-inhibitory rebound. This suggests a rebound excitation mechanism underlying the ability of HVC X neurons to integrate over long periods of time and represent sequence information. To explore this, we constructed a network model of realistic neurons showing how in-vivo HVC bursting properties link rebound excitation to network structure and behavior. These results demonstrate an explicit link between neuronal IPs and learned behavior. We propose that sequential behaviors exhibiting temporal regularity require IPs to be included in realistic network-level descriptions.

2.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R76-R83, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29590554

ABSTRACT

The hormone ghrelin promotes eating and is widely considered to be a hunger signal. Ghrelin receptors, growth hormone secretagogue receptors (GHSRs), are found in a number of specific regions throughout the brain, including the lateral septum (LS), an area not traditionally associated with the control of feeding. Here we investigated whether GHSRs in the LS play a role in the control of food intake. We examined the feeding effects of ghrelin and the GHSR antagonists ([d-Lys3]-growth hormone-releasing peptide-6 and JMV-2959) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS ghrelin significantly increased chow intake during the midlight phase, suggesting that pharmacological activation of LS GHSRs promotes feeding. Conversely, GHSR antagonist delivered to the LS shortly before dark onset significantly reduced chow intake. These data support the hypothesis that exogenous and endogenous stimulation of GHSRs in the LS influence feeding. Ghrelin is known to affect motivation for food, and the dorsal subdivision of LS (dLS) has been shown to play a role in motivation. Thus, we investigated the role of dLS GHSRs in motivation for food reward by examining operant responding for sucrose on a progressive ratio (PR) schedule. Intra-dLS ghrelin increased PR responding for sucrose, whereas blockade of LS GHSRs did not affect responding in either a fed or fasted state. Together these findings for the first time substantiate the LS as a site of action for ghrelin signaling in the control of food intake.


Subject(s)
Behavior, Animal , Eating , Food Preferences , Motivation , Receptors, Ghrelin/metabolism , Reinforcement, Psychology , Septal Nuclei/metabolism , Sucrose , Animals , Behavior, Animal/drug effects , Conditioning, Operant , Eating/drug effects , Food Preferences/drug effects , Ghrelin/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Hormone Antagonists/pharmacology , Male , Motivation/drug effects , Oligopeptides/pharmacology , Rats, Wistar , Receptors, Ghrelin/drug effects , Septal Nuclei/drug effects , Signal Transduction , Time Factors , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...