Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mol Cancer ; 23(1): 42, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402205

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma. A major mutagenic process in DLBCL is aberrant somatic hypermutation (aSHM) by activation-induced cytidine deaminase (AID), which occurs preferentially at RCH/TW sequence motifs proximal to transcription start sites. Splice sequences are highly conserved, rich in RCH/TW motifs, and recurrently mutated in DLBCL. Therefore, we hypothesized that aSHM may cause recurrent splicing mutations in DLBCL. In a meta-cohort of > 1,800 DLBCLs, we found that 77.5% of splicing mutations in 29 recurrently mutated genes followed aSHM patterns. In addition, in whole-genome sequencing (WGS) data from 153 DLBCLs, proximal mutations in splice sequences, especially in donors, were significantly enriched in RCH/TW motifs (p < 0.01). We validated this enrichment in two additional DLBCL cohorts (N > 2,000; p < 0.0001) and confirmed its absence in 12 cancer types without aSHM (N > 6,300). Comparing sequencing data from mouse models with and without AID activity showed that the splice donor sequences were the top genomic feature enriched in AID-induced mutations (p < 0.0001). Finally, we observed that most AID-related splice site mutations are clonal within a sample, indicating that aSHM may cause early loss-of-function events in lymphomagenesis. Overall, these findings support that AID causes an overrepresentation of clonal splicing mutations in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Animals , Mice , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Cytidine Deaminase/genetics
4.
J Pathol ; 261(1): 5-10, 2023 09.
Article in English | MEDLINE | ID: mdl-37352131

ABSTRACT

The World Health Organization's tumor classification guidelines are frequently updated and renewed as knowledge of cancer biology advances. For instance, in 2021, a novel lung tumor subtype named SMARCA4-deficient, undifferentiated tumor (SMARCA4-dUT, code 8044/3) was included. To date, there is no defined cell model for SMARCA4-dUT that could be used to help thoracic clinicians and researchers in the study of this newly defined tumor type. As this tumor type was recently described, it is feasible that some cell models formerly classified as lung adenocarcinoma (LUAD) could now be better classified as SMARCA4-dUT. Thus, in this work, we aimed to identify a bona fide cell model for the experimental study of SMARCA4-dUT. We compared the differential expression profiles of 36 LUAD-annotated cell lines and 38 cell lines defined as rhabdoid in repositories. These comparative results were integrated with the mutation and expression profiles of the SWI/SNF complex members, and they were surveyed for the presence of the SMARCA4-dUT markers SOX2, SALL4, and CD34, measured by RT-qPCR and western blotting. Finally, the cell line with the paradigmatic SMARCA4-dUT markers was engrafted into immunocompromised mice to assess the histological morphology of the formed tumors and compare them with those formed by a bona fide LUAD cancer cell line. NCI-H522, formerly classified as LUAD, displayed expression profiles nearer to rhabdoid tumors than LUAD tumors. Furthermore, NCI-H522 has most of the paradigmatic features of SMARCA4-dUT: hemizygous inactivating mutation of SMARCA4, severe SMARCA2 downregulation, and high-level expression of stem cell markers SOX2 and SALL4. In addition, the engrafted tumors of NCI-H522 did not display a typical differentiated glandular structure as other bona fide LUAD cell lines (A549) do but had rather a largely undifferentiated morphology, characteristic of SMARCA4-dUT. Thus, we propose the NCI-H522 as the first bona fide cell line model of SMARCA4-dUT. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Rhabdoid Tumor , Animals , Mice , Adenocarcinoma/pathology , Biomarkers, Tumor/analysis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Rhabdoid Tumor/pathology
5.
Nat Commun ; 14(1): 3342, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291246

ABSTRACT

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.


Subject(s)
Neoplasms , RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Mutation , Oncogenes , Genomics
6.
Biomark Res ; 11(1): 32, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941700

ABSTRACT

BACKGROUND: Recent massive sequencing studies have revealed that SWI/SNF complexes are among the most frequently altered functional entities in solid tumors. However, the role of SWI/SNF in acute myeloid leukemia is poorly understood. To date, SWI/SNF complexes are thought to be oncogenic in AML or, at least, necessary to support leukemogenesis. However, mutation patterns in SWI/SNF genes in AML are consistent with a tumor suppressor role. Here, we study the SWI/SNF subunit BCL7A, which has been found to be recurrently mutated in lymphomas, but whose role in acute myeloid malignancies is currently unknown. METHODS: Data mining and bioinformatic approaches were used to study the mutational status of BCL7A and the correlation between BCL7A expression and promoter hypermethylation. Methylation-specific PCR, bisulfite sequencing, and 5-aza-2'-deoxycytidine treatment assays were used to determine if BCL7A expression was silenced due to promoter hypermethylation. Cell competition assays after BCL7A expression restoration were used to assess the role of BCL7A in AML cell line models. Differential expression analysis was performed to determine pathways and genes altered after BCL7A expression restoration. To establish the role of BCL7A in tumor development in vivo, tumor growth was compared between BCL7A-expressing and non-expressing mouse xenografts using in vivo fluorescence imaging. RESULTS: BCL7A expression was inversely correlated with promoter methylation in three external cohorts: TCGA-LAML (N = 160), TARGET-AML (N = 188), and Glass et al. (2017) (N = 111). The AML-derived cell line NB4 silenced the BCL7A expression via promoter hypermethylation. Ectopic BCL7A expression in AML cells decreased their competitive ability compared to control cells. Additionally, restoration of BCL7A expression reduced tumor growth in an NB4 mouse xenograft model. Also, differential expression analysis found that BCL7A restoration altered cell cycle pathways and modified significantly the expression of genes like HMGCS1, H1-0, and IRF7 which can help to explain its tumor suppressor role in AML. CONCLUSIONS: BCL7A expression is silenced in AML by promoter methylation. In addition, restoration of BCL7A expression exerts tumor suppressor activity in AML cell lines and xenograft models.

7.
Mol Cancer ; 22(1): 39, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810086

ABSTRACT

Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Neoplasms , Humans , Neoplasms/metabolism , Genes, Tumor Suppressor , Mutation , Hematologic Neoplasms/genetics
8.
Oncogene ; 41(28): 3611-3624, 2022 07.
Article in English | MEDLINE | ID: mdl-35680984

ABSTRACT

Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Enhancer of Zeste Homolog 2 Protein , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Differentiation , Cell Line, Tumor , Cell Plasticity/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Lung Neoplasms/genetics , Polycomb-Group Proteins
9.
Clin Epigenetics ; 14(1): 42, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35300733

ABSTRACT

SWI/SNF complexes are major targets of mutations in cancer. Here, we combined multiple "-omics" methods to assess SWI/SNF composition and aberrations in LUAD. Mutations in lung SWI/SNF subunits were highly recurrent in our LUAD cohort (41.4%), and over 70% of the mutations were predicted to have functional impact. Furthermore, SWI/SNF expression in LUAD suffered an overall repression that could not be explained exclusively by genetic alterations. Finally, SWI/SNF mutations were associated with poorer overall survival in TCGA-LUAD. We propose SWI/SNF-mutant LUAD as a separate clinical subgroup with practical implications.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , DNA Methylation , DNA-Binding Proteins/genetics , Humans , Lung Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Cell Oncol (Dordr) ; 45(2): 323-332, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35182388

ABSTRACT

PURPOSE: Plakophilin 1 (PKP1) is well-known as an important component of the desmosome, a cell structure specialized in spot-like cell-to-cell adhesion. Although desmosomes have generally been associated with tumor suppressor functions, we recently found that PKP1 is recurrently overexpressed in squamous cell lung cancer (SqCLC) to exert an oncogenic role by enhancing the translation of MYC (c-Myc), a major oncogene. In this study, we aim to further characterize the functional relationship between PKP1 and MYC. METHODS: To determine the functional relationship between PKP1 and MYC, we performed correlation analyses between PKP1 and MYC mRNA expression levels, gain/loss of function models, chromatin immunoprecipitation (ChIP) and promoter mutagenesis followed by luciferase assays. RESULTS: We found a significant correlation between the mRNA levels of MYC and PKP1 in SqCLC primary tumor samples. In addition, we found that MYC is a direct transcription factor of PKP1 and binds to specific sequences within its promoter. In agreement with this, we found that MYC knockdown reduced PKP1 protein expression in different SqCLC models, which may explain the PKP1-MYC correlation that we found. Conversely, we found that PKP1 knockdown reduced MYC protein expression, while PKP1 overexpression enhanced MYC expression in these models. CONCLUSIONS: Based on these results, we propose a feedforward functional relationship in which PKP1 enhances MYC translation in conjunction with the translation initiation complex by binding to the 5'-UTR of MYC mRNA, whereas MYC promotes PKP1 transcription by binding to its promoter. These results suggest that PKP1 may serve as a therapeutic target for SqCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Epithelial Cells/pathology , Humans , Lung Neoplasms/pathology , Plakophilins/genetics , Plakophilins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/genetics
12.
Cell Genom ; 2(9): 100171, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36778670

ABSTRACT

Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their functional roles in cancer hallmarks remain unclear. We employ pooled CRISPR deletion to perturb 831 lncRNAs detected in KRAS-mutant non-small cell lung cancer (NSCLC) and measure their contribution to proliferation, chemoresistance, and migration across two cell backgrounds. Integrative analysis of these data outperforms conventional "dropout" screens in identifying cancer genes while prioritizing disease-relevant lncRNAs with pleiotropic and background-independent roles. Altogether, 80 high-confidence oncogenic lncRNAs are active in NSCLC, which tend to be amplified and overexpressed in tumors. A follow-up antisense oligonucleotide (ASO) screen shortlisted two candidates, Cancer Hallmarks in Lung LncRNA 1 (CHiLL1) and GCAWKR, whose knockdown consistently suppressed cancer hallmarks in two- and three-dimension tumor models. Molecular phenotyping reveals that CHiLL1 and GCAWKR control cellular-level phenotypes via distinct transcriptional networks. This work reveals a multi-dimensional functional lncRNA landscape underlying NSCLC that contains potential therapeutic vulnerabilities.

13.
PLoS One ; 16(11): e0252848, 2021.
Article in English | MEDLINE | ID: mdl-34731163

ABSTRACT

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating the modulation of lncRNA expression during early development. We performed an unbiased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during endoderm differentiation. While dozens of lncRNA loci were required for proper differentiation, most differentially expressed lncRNAs were not, supporting the necessity for functional screening instead of relying solely on gene expression analyses. In parallel, we developed a clustering approach to infer mechanisms of action of lncRNA hits based on a variety of genomic features. We subsequently identified and validated FOXD3-AS1 as a functional lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and methodology described herein can be adapted to discover and characterize novel regulators of differentiation into any lineage.


Subject(s)
Cell Differentiation/genetics , CRISPR-Cas Systems , Forkhead Transcription Factors/genetics , Humans , RNA Interference , RNA, Long Noncoding
14.
Nat Commun ; 12(1): 4319, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262032

ABSTRACT

Despite the genetic inactivation of SMARCA4, a core component of the SWI/SNF-complex commonly found in cancer, there are no therapies that effectively target SMARCA4-deficient tumours. Here, we show that, unlike the cells with activated MYC oncogene, cells with SMARCA4 inactivation are refractory to the histone deacetylase inhibitor, SAHA, leading to the aberrant accumulation of H3K27me3. SMARCA4-mutant cells also show an impaired transactivation and significantly reduced levels of the histone demethylases KDM6A/UTX and KDM6B/JMJD3, and a strong dependency on these histone demethylases, so that its inhibition compromises cell viability. Administering the KDM6 inhibitor GSK-J4 to mice orthotopically implanted with SMARCA4-mutant lung cancer cells or primary small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), had strong anti-tumour effects. In this work we highlight the vulnerability of KDM6 inhibitors as a characteristic that could be exploited for treating SMARCA4-mutant cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Helicases/deficiency , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Neoplasms/drug therapy , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Animals , Antineoplastic Agents/pharmacology , Benzazepines/pharmacology , Benzazepines/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , DNA Helicases/metabolism , Drug Resistance, Neoplasm/drug effects , Gene Expression , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , Neoplasms/metabolism , Nuclear Proteins/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Transcription Factors/metabolism , Transcriptional Activation
15.
Hum Mol Genet ; 30(23): 2263-2271, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34240140

ABSTRACT

SWitch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes are key epigenetic regulators that are recurrently mutated in cancer. Most studies of these complexes are focused on their role in regulating protein-coding genes. However, here, we show that SWI/SNF complexes control the expression of microRNAs. We used a SMARCA4-deficient model of lung adenocarcinoma (LUAD) to track changes in the miRNome upon SMARCA4 restoration. We found that SMARCA4-SWI/SNF complexes induced significant changes in the expression of cancer-related microRNAs. The most significantly dysregulated microRNA was miR-222, whose expression was promoted by SMARCA4-SWI/SNF complexes, but not by SMARCA2-SWI/SNF complexes via their direct binding to a miR-222 enhancer region. Importantly, miR-222 expression decreased cell viability, phenocopying the tumor suppressor role of SMARCA4-SWI/SNF complexes in LUAD. Finally, we showed that the miR-222 enhancer region resides in a topologically associating domain that does not contain any cancer-related protein-coding genes, suggesting that miR-222 may be involved in exerting the tumor suppressor role of SMARCA4. Overall, this study highlights the relevant role of the SWI/SNF complex in regulating the non-coding genome, opening new insights into the pathogenesis of LUAD.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Genes, Tumor Suppressor , MicroRNAs/genetics , Transcription Factors/metabolism , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , DNA-Binding Proteins , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Humans , Models, Biological
16.
Cancers (Basel) ; 12(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321963

ABSTRACT

Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead to the discovery of new therapeutic drugs. However, choosing an appropriate cancer cell line model for SWI/SNF functional studies can be challenging because SWI/SNF subunits are frequently altered in cancer by various mechanisms, including genetic alterations and post-transcriptional mechanisms. In this work, we combined genomic, transcriptomic, and proteomic approaches to study the mutational status and the expression levels of the SWI/SNF subunits in a panel of 38 lung adenocarcinoma (LUAD) cell lines. We found that the SWI/SNF complex was mutated in more than 76% of our LUAD cell lines and there was a high variability in the expression of the different SWI/SNF subunits. These results underline the importance of the SWI/SNF complex as a tumor suppressor in LUAD and the difficulties in defining altered and unaltered cell models for the SWI/SNF complex. These findings will assist researchers in choosing the most suitable cellular models for their studies of SWI/SNF to bring all of its potential to the development of novel therapeutic applications.

17.
Cancers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348573

ABSTRACT

Pediatric acute B-cell lymphoblastic leukemia (B-ALL) constitutes a heterogeneous and aggressive neoplasia in which new targeted therapies are required. Long non-coding RNAs have recently emerged as promising disease-specific biomarkers for the clinic. Here, we identified pediatric B-ALL-specific lncRNAs and associated mRNAs by comparing the transcriptomic signatures of tumoral and non-tumoral samples. We identified 48 lncRNAs that were differentially expressed between pediatric B-ALL and healthy bone marrow samples. The most relevant lncRNA/mRNA pair was AL133346.1/CCN2 (previously known as RP11-69I8.3/CTGF), whose expression was positively correlated and increased in B-ALL samples. Their differential expression pattern and their strong correlation were validated in external B-ALL datasets (Therapeutically Applicable Research to Generate Effective Treatments, Cancer Cell Line Encyclopedia). Survival curve analysis demonstrated that patients with "high" expression levels of CCN2 had higher overall survival than those with "low" levels (p = 0.042), and this gene might be an independent prognostic biomarker in pediatric B-ALL. These findings provide one of the first detailed descriptions of lncRNA expression profiles in pediatric B-ALL and indicate that these potential biomarkers could help in the classification of leukemia subtypes and that CCN2 expression could predict the survival outcome of pediatric B-cell acute lymphoblastic leukemia patients.

18.
Cancers (Basel) ; 12(8)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731343

ABSTRACT

Long non-coding RNAs (lncRNAs) are a heterogeneous class of non-coding RNAs whose biological roles are still poorly understood. LncRNAs serve as gene expression regulators, frequently interacting with epigenetic factors to shape the outcomes of crucial biological processes, and playing roles in different pathologies including cancer. Over the last years, growing scientific evidence supports the key role of some lncRNAs in tumor development and proposes them as valuable biomarkers for the clinic. In this study, we aimed to characterize lncRNAs whose expression is altered in tumor samples from patients with lung adenocarcinoma (LUAD) compared to adjacent normal tissue samples. On an RT-qPCR survey of 90 cancer-related lncRNAs, we found one lncRNA, DLG2-AS1, which was consistently downregulated in 70 LUAD patients. To gain insight into its biological function, DLG2-AS1 was cloned and successfully re-expressed in LUAD cancer cell lines. We determined that DLG2-AS1 is not a cis-regulatory element of its overlapping gene DLG2, as their transcription levels were not correlated, nor did DLG2-AS1 restoration modify the expression of DLG2 protein. Furthermore, after generating a receiver operating curve (ROC) and calculating the area under curve (AUC), we found that DLG2-AS1 expression showed high sensitivity and specificity (AUC = 0.726) for the classification of LUAD and normal samples, determining its value as a potential lung cancer biomarker.

19.
Leukemia ; 34(10): 2722-2735, 2020 10.
Article in English | MEDLINE | ID: mdl-32576963

ABSTRACT

Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex are frequently found in different human cancers. While the tumor suppressor function of this complex is widely established in solid tumors, its role in hematologic malignancies is largely unknown. Recurrent point mutations in BCL7A gene, encoding a subunit of the SWI/SNF complex, have been reported in diffuse large B-cell lymphoma (DLBCL), but their functional impact remains to be elucidated. Here we show that BCL7A often undergoes biallelic inactivation, including a previously unnoticed mutational hotspot in the splice donor site of intron one. The splice site mutations render a truncated BCL7A protein, lacking a portion of the amino-terminal domain. Moreover, restoration of wild-type BCL7A expression elicits a tumor suppressor-like phenotype in vitro and in vivo. In contrast, splice site mutations block the tumor suppressor function of BCL7A by preventing its binding to the SWI/SNF complex. We also show that BCL7A restoration induces transcriptomic changes in genes involved in B-cell activation. In addition, we report that SWI/SNF complex subunits harbor mutations in more than half of patients with germinal center B-cell (GCB)-DLBCL. Overall, this work demonstrates the tumor suppressor function of BCL7A in DLBCL, and highlights that the SWI/SNF complex plays a relevant role in DLBCL pathogenesis.


Subject(s)
Genes, Tumor Suppressor , Lymphoma, Large B-Cell, Diffuse/genetics , Microfilament Proteins/genetics , Mutation , Oncogene Proteins/genetics , Protein Interaction Domains and Motifs/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Chromatography, Liquid , Chromosomal Proteins, Non-Histone/metabolism , DNA Mutational Analysis , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lymphocyte Activation/immunology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/therapy , Mice , Microfilament Proteins/chemistry , Molecular Imaging , Multiprotein Complexes , Oncogene Proteins/chemistry , Protein Binding , Tandem Mass Spectrometry , Xenograft Model Antitumor Assays
20.
Oncotarget ; 11(13): 1172-1185, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32284793

ABSTRACT

It is increasingly evident that non-coding RNAs play a significant role in tumour development. However, we still have a limited knowledge of the clinical significance of long non-coding RNAs (lncRNAs) in lung cancer. The FENDRR is a long coding RNA (also named FOXF1-AS1) located in the vicinity of the protein-coding gene FOXF1 at 16q24.1 chromosomal region. The present study aimed to define the clinic pathological significance of the long-non-coding RNA FENDRR in lung adenocarcinomas. FENDRR expression measured by quantitative PCR was found significantly downregulated (p<0.001) in lung adenocarcinoma samples in comparison with their normal adjacent tissues (n=70). RNA in situ hybridization (RNA-FISH) corroborated independently the down-regulation of FENDRR. Interestingly, the expression of FENDRR correlated positively (p<0.001) with the expression of its protein-coding neighbor gene FOXF1. Additionally, FOXF1 expression was also found downregulated in adenocarcinomas compared to normal samples (p<0.001) and its expression was significantly correlated with overall survival alone (p=0.003) or in combination with FENDRR expression (p=0.01). In conclusion, our data support that FENDRR and FOXF1 expression is decreased in lung adenocarcinoma and should be considered as new potential diagnostic/prognosis biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL
...