Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocr Relat Cancer ; 28(7): 403-418, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33908371

ABSTRACT

The patient's hormonal context plays a crucial role in the outcome of cancer. However, the association between thyroid disease and breast cancer risk remains unclear. We evaluated the effect of thyroid status on breast cancer growth and dissemination in an immunocompetent mouse model. For this, hyperthyroid and hypothyroid Balb/c mice were orthotopically inoculated with triple-negative breast cancer 4T1 cells. Tumors from hyperthyroid mice showed an increased growth rate and an immunosuppressive tumor microenvironment, characterized by increased IL-10 levels and decreased percentage of activated cytotoxic T cells. On the other hand, delayed tumor growth in hypothyroid animals was associated with increased tumor infiltration of activated CD8+ cells and a high IFNγ/IL-10 ratio. Paradoxically, hypothyroid mice developed a higher number of lung metastasis than hyperthyroid animals. This was related to an increased secretion of tumor CCL2 and an immunosuppressive systemic environment, with increased proportion of regulatory T cells and IL-10 levels in spleens. A lower number of lung metastasis in hyperthyroid mice was related to the reduced presence of mesenchymal stem cells in tumors and metastatic sites. These animals also exhibited decreased percentages of regulatory T lymphocytes and myeloid-derived suppressor cells in spleens but increased activated CD8+ cells and the IFNγ/IL-10 ratio. Therefore, thyroid hormones modulate the cellular and cytokine content of the breast tumor microenvironment. A better understanding of the mechanisms involved in these effects could be a starting point for the discovery of new therapeutic targets for breast cancer.


Subject(s)
Breast Neoplasms , Hyperthyroidism , Hypothyroidism , Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Interleukin-10/therapeutic use , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Tumor Microenvironment
2.
Anticancer Agents Med Chem ; 17(3): 359-364, 2017.
Article in English | MEDLINE | ID: mdl-26552391

ABSTRACT

BACKGROUND: Chemotherapy is one of the most common approaches for cancer treatment. Particularly Doxorubicin has been proven to be effective in the treatment of many soft and solid tumors for locally advanced and metastatic cancer. It is not easy to clinically evaluate the chemotoxic or chemoprotective effect of some drugs, even more when there is a subclinical toxicity. OBJECTIVE: To determine the usefulness of the hepatobiliary, colloid and cardiac scintigraphies, employing99mTcdisida, 99mTc-phytate and 99mTc-sestamibi respectively, in the evaluation of the hepato and cardiotoxicity of two chemotherapeutic treatments assessed in rats. METHOD: Two groups were submitted to doxorubicin (DOX) treatment and one was co-administered with histamine (DOX+HIS). Static 99mTc-phytate and 99mTc-sestamibi scintigraphies as well as a dynamic 99mTc-disida study were performed in a small field of view gamma camera at: 0 weeks (control), 1 week and 2 weeks of treatment. Imagenological parameters were calculated: Liver/Bone Marrow ratio (L/BM), Heart/Background ratio (H/B) and time to the maximum (Tmax) for 99mTc-phytate, 99mTc-sestamibi and 99mTc-disida extraction, respectively. RESULTS: Control (L/BM= 98±3; H/B=2.3±0.4; Tmax=8±3), DOX (L/BM: 85±3, 80±3; H/B, 3.5±0.5, 3.3±0.5 and Tmax 6±1, 4±1) for 1 and 2 weeks respectively and DOX+HIS (L/BM: 99±0.3, 98±1; H/B 2.9±0.5, 2.9±0.5 and Tmax, 8±2, 9±2) for 1 and 2 weeks, respectively. Histological analysis showed cardio and hepatotoxicity induced by doxorubicin. CONCLUSION: Imagenological parameters showed differences among treated and control groups and between both chemotherapy treatments. Thus, these radiopharmaceutical functional approaches were able to reflect heart and liver toxicity produced by doxorubicin.


Subject(s)
Antineoplastic Agents/adverse effects , Doxorubicin/adverse effects , Heart/drug effects , Histamine/adverse effects , Liver/drug effects , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cardiotoxicity , Dose-Response Relationship, Drug , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Histamine/administration & dosage , Histamine/pharmacology , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...