Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 794572, 2022.
Article in English | MEDLINE | ID: mdl-35153828

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific syndrome with multisystem involvement which leads to fetal, neonatal, and maternal morbidity and mortality. A model of salt-loaded pregnant rats has been previously studied, sharing several pathological characteristics of preeclamptic women. In this study, it was compared the effects of the treatment with an oral magnesium salt, magnesium gluconate (Mg-gluconate), on the osmotic fragility of red blood cells, lipid peroxidation, and PMCA activity of placental homogenates and red blood cell ghosts in salt-loaded pregnant rats. Mg-gluconate has a higher antioxidant capacity than MgSO4 due to the presence of several hydroxyl groups in the two anions of this salt. Salt-loaded pregnant rats received 1.8% NaCl solution ad libitum as a beverage during the last week of pregnancy. On day 22nd of pregnancy, the rats were euthanized and red blood cells and placenta were obtained. Salt-loaded pregnant rats showed an increased level of lipid peroxidation and a lowered PMCA activity in placental and red blood cell ghosts, as well as an increased osmotic fragility of their red blood cells. The treatment of the salt-loaded pregnant rats with Mg-gluconate avoids the rise in the level of lipid peroxidation and the concomitant lowering of the PMCA activity of their red blood cell membranes, reaching values similar to those from control pregnant rats. Also, this treatment prevents the increase of the osmotic fragility of their red blood cells, keeping values similar to those from control pregnant rats. Mg-gluconate seems to be an important candidate for the replacement of the MgSO4 treatment of preeclamptic women.

2.
Front Physiol ; 12: 774095, 2021.
Article in English | MEDLINE | ID: mdl-34925067

ABSTRACT

Aquaporin-9 (AQP9) expression is significantly increased in preeclamptic placentas. Since feto-maternal water transfer is not altered in preeclampsia, the main role of AQP9 in human placenta is unclear. Given that AQP9 is also a metabolite channel, we aimed to evaluate the participation of AQP9 in lactate transfer across the human placenta. Explants from normal term placentas were cultured in low glucose medium with or without L-lactic acid and in the presence and absence of AQP9 blockers (0.3 mM HgCl2 or 0.5 mM Phloretin). Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and lactate dehydrogenase release. Apoptotic indexes were analyzed by Bax/Bcl-2 ratio and Terminal Deoxynucleotidyltransferase-Mediated dUTP Nick-End Labeling assay. Heavy/large and light/small mitochondrial subpopulations were obtained by differential centrifugation, and AQP9 expression was detected by Western blot. We found that apoptosis was induced when placental explants were cultured in low glucose medium while the addition of L-lactic acid prevented cell death. In this condition, AQP9 blocking increased the apoptotic indexes. We also confirmed the presence of two mitochondrial subpopulations which exhibit different morphologic and metabolic states. Western blot revealed AQP9 expression only in the heavy/large mitochondrial subpopulation. This is the first report that shows that AQP9 is expressed in the heavy/large mitochondrial subpopulation of trophoblasts. Thus, AQP9 may mediate not only the lactic acid entrance into the cytosol but also into the mitochondria. Consequently, its lack of functionality in preeclamptic placentas may impair lactic acid utilization by the placenta, adversely affecting the survival of the trophoblast cells and enhancing the systemic endothelial dysfunction.

3.
Front Physiol ; 12: 760163, 2021.
Article in English | MEDLINE | ID: mdl-34938200

ABSTRACT

We recently reported that an intact caveolar structure is necessary for adequate cell migration and tubulogenesis of the human extravillous trophoblast (EVT) cells. Emerging evidence supports that hyperosmolarity induces the internalization of caveolae into the cytoplasm and accelerates their turnover. Furthermore, signaling pathways associated with the regulation of trophoblast differentiation are localized in caveolae. We hypothesized that hyperosmolarity impairs EVT differentiation and caveolae/caveolin-1 (Cav-1) participates in this process. EVT cells (Swan 71 cell line) were cultured in complete Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 and exposed to hyperosmolar condition (generated by the addition of 100 mM sucrose). Hyperosmolarity altered the EVT cell migration and the formation of tube-like structures. In addition, cell invasion was decreased along with a reduction in the latent and active forms of matrix metalloproteinase-2 (MMP-2) secreted by these cells. With respect to Cav-1 protein abundance, we found that hyperosmolarity enhanced its degradation by the lysosomal pathway. Accordingly, in the hyperosmolar condition, we also observed a significant increase in the number of vacuoles and the internalization of the caveolae into the cytoplasm. Taken together, our findings suggest that hyperosmolarity may induce caveolae internalization and increase their turnover, compromising the normal differentiation of EVT cells.

4.
Front Physiol ; 12: 696495, 2021.
Article in English | MEDLINE | ID: mdl-34267676

ABSTRACT

Placentas from preeclamptic women display augmented tumor necrosis factor-alpha (TNF-α) levels with reduced expression of aquaporin 3 (AQP3). However, whether TNF-α modulates AQP3 expression remains to be elucidated. We hypothesize that elevated levels of TNF-α reduce AQP3 expression and negatively impact trophoblastic cell migration. Spontaneously hypertensive rats (SHRs) and Wistar rats (14-16 weeks) were divided into hypertensive and normotensive groups, respectively. Systolic blood pressure (SBP) was measured, and animals mated. In a third group, pregnant SHRs were treated with a TNF-α antagonist, etanercept (0.8 mg/kg, subcutaneously) on days 0, 6, 12, and 18 of pregnancy. Placentas were collected on the 20th day of pregnancy. Human placental explants, from normotensive pregnancies, were incubated with TNF-α (5, 10, and 20 ng/ml) and/or etanercept (1 µg/ml). Swan 71 cells were incubated with TNF-α (10 ng/ml) and/or etanercept (1 µg/ml) and subjected to the wound healing assay. AQP3 expression was assessed by Western blot and TNF-α levels by ELISA. SBP (mmHg) was elevated in the hypertensive group, and etanercept treatment reduced this parameter. Placental TNF-α levels (pg/ml) were higher in the hypertensive group. AQP3 expression was reduced in the hypertensive group, and etanercept treatment reversed this parameter. Explants submitted to TNF-α exposition displayed reduced expression of AQP3, and etanercept incubation reversed it. Trophoblastic cells incubated with TNF-α showed decreased cell migration and reduced AQP3 expression, and etanercept incubation ameliorated it. Altogether, these data demonstrate that high TNF-α levels negatively modulate AQP3 in placental tissue, impairing cell migration, and its relationship in a pregnancy affected by hypertension.

5.
Front Physiol ; 12: 785219, 2021.
Article in English | MEDLINE | ID: mdl-35095555

ABSTRACT

We assessed the diagnostic utility of uric acid for the prediction of preeclampsia. An observational prospective approach was carried out during 2014. Preeclamptic women were classified into 4 groups accordingly to the onset of preeclampsia and the presence of intrauterine growth restriction (IUGR). Serum uric acid levels, urea, and creatinine were measured. Receiver operating curves (ROC) of the uric acid levels ratio (UAr) between a dosage before and after the 20th week of gestation were performed. One thousand two hundred and ninety-third pregnant women were enrolled in this study. Eight hundred ten had non-complicated pregnancies, 40 preeclampsia, 33 gestational hypertension, and 20 IUGR without preeclampsia. Uric acid significantly raised after 20 weeks of gestation in women who develop preeclampsia before 34 weeks (Group A) or in those who develop preeclampsia after 37 weeks associated with IUGR (Group C). In women who develop preeclampsia after 34 weeks without IUGR (Groups B and D), uric acid increased after the 30th week of gestation. In all groups, UAr was greater than 1.5. In gestational hypertension, UAr was superior to 1.5 toward the end of gestation, while in IUGR without preeclampsia, the behavior of serum uric acid was similar to non-complicated pregnancies. In all cases, urea and creatinine showed normal values, confirming that patients had no renal compromise. ROC area was 0.918 [95% confidence interval (CI): 0.858-0.979) for the preeclampsia group and 0.955 (95% CI: 0.908-1.000) for Group A. UAr at a cut-off point ≥1.5 had a very low positive predictive value, but a high negative predictive value of 99.5% for preeclampsia and it reached 100% for Group A. Thus, a UAr less than 1.5 may be a helpful parameter with a strong exclusion value and high sensitivity for those women who are not expected to develop preeclampsia. Additionally, this low-cost test would allow for better use of resources in developing countries.

6.
J Cell Physiol ; 235(4): 3382-3392, 2020 04.
Article in English | MEDLINE | ID: mdl-31541456

ABSTRACT

Caveolae constitute membrane domains critical for the organization and synchronization of different signaling molecules related to numerous cell processes such as cell migration, invasion, and differentiation. Caveolin-1 (Cav-1) is the main integral membrane protein of these domains. Recently, it was found that a normal expression of aquaporin-3 (AQP3) is required for extravillous trophoblast (EVT) cell migration. Our aim was to investigate the role of caveolae in the migration, invasion, and endovascular differentiation of human EVT cells during placentation and its interaction with AQP3. EVT cells (Swan 71 cell line) were cultured in complete Dulbecco's modified Eagle's medium-nutrient mixture F12 and treated with 5 mM methyl-ß-cyclodextrin (MßCD) to disrupt caveolae. We found that after MßCD treatment, Cav-1 protein was undetectable. In this condition, the ability of the cells to migrate was significantly decreased compared with the control cells, while no differences were observed in the number of invading cells and the metalloproteinases activity between control and MßCD-treated cells. Surprisingly, the disruption of caveolae significantly enhanced EVT endovascular differentiation. On the contrary, the silencing of AQP3, negatively affected tube-like formation. The theoretical analysis of the primary sequence of AQP3 protein revealed a putative Cav-1-binding site. In addition, immunoprecipitation and double immunofluorescence assays showed that AQP3 colocalized with Cav-1. These results showed that during placentation an intact caveola in EVT cells may be necessary for AQP3 and Cav-1 interaction and any perturbations might result in serious pregnancy disorders.


Subject(s)
Aquaporin 3/genetics , Caveolae/metabolism , Caveolin 1/genetics , Trophoblasts/metabolism , Binding Sites , Cell Differentiation/genetics , Cell Movement/genetics , Female , Humans , Placentation/genetics , Pregnancy , Protein Binding , Protein Interaction Maps/genetics , Signal Transduction , beta-Cyclodextrins
7.
Front Physiol ; 9: 1507, 2018.
Article in English | MEDLINE | ID: mdl-30425647

ABSTRACT

Accumulated evidence suggests that an abnormal placentation and an altered expression of a variety of trophoblast transporters are associated to preeclampsia. In this regard, an abnormal expression of AQP3 and AQP9 was reported in these placentas. Recent data suggests that placental AQPs are not only water channel proteins and that may participate in relevant processes required for a normal placental development, such as cell migration and apoptosis. Recently we reported that a normal expression of AQP3 is required for the migration of extravillous trophoblast (EVT) cells. Thus, alterations in this protein might lead to an insufficient transformation of the maternal spiral arteries resulting in fluctuations of oxygen tension, a potent stimulus for oxidative damage and trophoblast apoptosis. In this context, the increase of oxygen and nitrogen reactive species could nitrate AQP9, producing the accumulation of a non-functional protein affecting the survival of the villous trophoblast (VT). This may trigger the exacerbated release of apoptotic VT fragments into maternal circulation producing the systemic endothelial dysfunction underlying the maternal syndrome. Therefore, our hypothesis is that the alteration in the expression of placental AQPs observed at the end of gestation may take place during the trophoblast stem cell differentiation, disturbing both EVT and VT cells development, or during the VT differentiation and turnover. In both situations, VT is affected and at last the maternal vascular system is activated leading to the clinical manifestations of preeclampsia.

SELECTION OF CITATIONS
SEARCH DETAIL
...