Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 20(1): 79-97, 2022 01.
Article in English | MEDLINE | ID: mdl-34337850

ABSTRACT

Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.


Subject(s)
Carbonates , Microbiota , Biofilms , Calcium Carbonate/chemistry , Chemical Precipitation , Lakes
2.
J Sep Sci ; 44(19): 3654-3664, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34324250

ABSTRACT

Fast, cheap, and simple separation of lipids and hydrocarbons can currently be achieved using thin-layer chromatography. Here, we describe an alternative planar chromatographic method using polyvinylidene difluoride membranes as the stationary phase. The procedure has the same advantages of thin-layer chromatography over other expensive and time-consuming techniques, such as high-performance liquid chromatography or gas chromatography. Polyvinylidene difluoride membranes, however, also provide an immediate support for analyte development via immunodetection, are easy to manipulate, and potentially increase the performance of other detection methods. We show that polyvinylidene difluoride membranes are compatible with a variety of solvents that can migrate by capillarity and redistribute analytes between the membrane and the solvent according to their relative affinities, providing a chromatographic separation. We directly test the developed membranes by immunoblotting using anti-squalene antibodies that cross-react with acyclic isoprenoids. Separations of crude oils and plant extracts under different solvent conditions show the potential to resolve hydrocarbon group types and also to provide characteristic fingerprints of plant pigments and squalene degradation products. Polyvinylidene difluoride membranes prove useful as a stationary phase for planar chromatography and for the subsequent immunodetection of the separated compounds, providing a new and simple chromatographic technique to analyze lipids and hydrocarbons.

3.
Microb Biotechnol ; 13(6): 1877-1888, 2020 11.
Article in English | MEDLINE | ID: mdl-32720477

ABSTRACT

Microbial precipitation of calcium carbonate is a widespread environmental phenomenon that has diverse engineering applications, from building and soil restoration to carbon sequestration. Urease-mediated ureolysis and CO2 (de)hydration by carbonic anhydrase (CA) are known for their potential to precipitate carbonate minerals, yet many environmental microbial community studies rely on marker gene or metagenomic approaches that are unable to determine in situ activity. Here, we developed fast and cost-effective tests for the field detection of urease and CA activity using pH-sensitive strips inside microcentrifuge tubes that change colour in response to the reaction products of urease (NH3 ) and CA (CO2 ). The urease assay proved sensitive and useful in the field to detect in situ activity in biofilms from a saline lake, a series of calcareous fens, and ferrous springs, finding relatively high urease activity in lake samples. Incubations of lake microbes with urea resulted in significantly higher CaCO3 precipitation compared to incubations with a urease inhibitor, showing that the rapid assay indicated an on-site active metabolism potentially mediating carbonate precipitation. The CA assay, however, showed less sensitivity compared to the urease test. While its sensitivity limits its utility, the assay may still be useful as a preliminary indicator given the paucity of other means for detecting CA activity in the field. Field urease, and potentially CA, activity assays complement molecular approaches and facilitate the search for carbonate-precipitating microbes and their in situ activity, which could be applied toward agriculture, engineering and carbon sequestration technologies.


Subject(s)
Carbonic Anhydrases , Urease , Biofilms , Calcium Carbonate , Urea
4.
Geobiology ; 17(1): 76-90, 2019 01.
Article in English | MEDLINE | ID: mdl-30369004

ABSTRACT

The processes that lead to the precipitation of authigenic calcium phosphate minerals in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating bacteria. These bacteria are believed to concentrate phosphate in sediment pore waters, creating supersaturated conditions with respect to apatite precursors. However, the relationship between microbes and phosphorite formation is not fully resolved. To further study this association, we examined microbial community data generated from two sources: sediment cores recovered from the shelf of the Benguela upwelling region where phosphorites are currently forming, and DNA preserved within phosphoclasts recovered from a phosphorite deposit along the Benguela shelf. iTag and clone library sequencing of the 16S rRNA gene showed that many of our sediment-hosted communities shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfate-reducing bacteria and sulfur-oxidizing bacteria were particularly abundant in our datasets, as were phylotypes that are known to carry out nitrification and the anaerobic oxidation of ammonium. The DNA extracted from phosphoclasts contained the signature of a distinct microbial community from those observed in the modern sediments. While some aspects of the modern and phosphoclast communities were similar, we observed both an enrichment of certain common microbial classes found in the modern phosphogenic sediments and a relative depletion of others. The phosphoclast-associated DNA could represent a relict signature of one or more microbial assemblages that were present when the apatite or its precursors precipitated. While these taxa may or may not have contributed to the precipitation of the apatite that now hosts their genetic remains, several groups represented in the phosphoclast extract dataset have the genetic potential to metabolize polyphosphate, and perhaps modulate phosphate concentrations in pore waters where carbonate fluorapatite (or its precursors) are known to be precipitating.


Subject(s)
Aquatic Organisms/metabolism , Bacteria/metabolism , DNA, Bacterial/analysis , Geologic Sediments/chemistry , Minerals/analysis , Phosphates/analysis , Atlantic Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...