Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(4): 3173-3186, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38235963

ABSTRACT

Recently, a step-flow growth mode has been proposed to break the inherent molybdenum disulfide (MoS2) crystal domain bimodality and yield a single-crystalline MoS2 monolayer on commonly employed sapphire substrates. This work reveals an alternative growth mechanism during the metal-organic chemical vapor deposition (MOCVD) of a single-crystalline MoS2 monolayer through anisotropic 2D crystal growth. During early growth stages, the epitaxial symmetry and commensurability of sapphire terraces rather than the sapphire step inclination ultimately govern the MoS2 crystal orientation. Strikingly, as the MoS2 crystals continue to grow laterally, the sapphire steps transform the MoS2 crystal geometry into diamond-shaped domains presumably by anisotropic diffusion of ad-species and facet development. Even though these MoS2 domains nucleate on sapphire with predominantly bimodal 0 and 60° azimuthal rotation, the individual domains reach lateral dimensions of up to 200 nm before merging seamlessly into a single-crystalline MoS2 monolayer upon coalescence. Plan-view transmission electron microscopy reveals the single-crystalline nature across 50 µm by 50 µm inspection areas. As a result, the median carrier mobility of MoS2 monolayers peaks at 25 cm2 V-1 s-1 with the highest value reaching 28 cm2 V-1 s-1. This work details synthesis-structure correlations and the possibilities to tune the structure and material properties through substrate topography toward various applications in nanoelectronics, catalysis, and nanotechnology. Moreover, shape modulation through anisotropic growth phenomena on stepped surfaces can provide opportunities for nanopatterning for a wide range of materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...