Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38671863

ABSTRACT

D-galactose has been widely used as an inducer of cellular senescence and pathophysiological processes related to aging because it induces oxidative stress. On the other hand, the consumption of antioxidants such as curcumin can be an effective strategy to prevent phenotypes related to the enhanced production of reactive oxygen species (ROS), such as aging and senescence. This study aimed to evaluate the potential protective effect of curcumin on senescence and oxidative stress and endoplasmic reticulum stress induced by D-galactose treatment in Lilly Laboratories Culture-Porcine Kidney 1 (LLC-PK1) and human kidney 2 (HK-2) proximal tubule cell lines from pig and human, respectively. For senescence induction, cells were treated with 300 mM D-galactose for 120 h and, to evaluate the protective effect of the antioxidant, cells were treated with 5 µM curcumin for 24 h and subsequently treated with curcumin + D-galactose for 120 h. In LLC-PK1 cells, curcumin treatment decreased by 20% the number of cells positive for senescence-associated (SA)-ß-D-galactosidase staining and by 25% the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and increased by 40% lamin B1 expression. In HK-2 cells, curcumin treatment increased by 60% the expression of proliferating cell nuclear antigen (PCNA, 50% Klotho levels, and 175% catalase activity. In both cell lines, this antioxidant decreased the production of ROS (20% decrease for LLC-PK1 and 10 to 20% for HK-2). These data suggest that curcumin treatment has a moderate protective effect on D-galactose-induced senescence in LLC-PK1 and HK-2 cells.

2.
Life Sci ; 336: 122305, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38030061

ABSTRACT

AIM: Obesity is a worldwide health issue, associated with development of type 2 Diabetes Mellitus. The aim of this study is to analyze the effect of consumption of two hypercaloric diets on metabolic disturbance and beta cells damage. MAIN METHODS: Male Wistar rats were subjected to twelve months consumption of three diets: a Control balanced diet (CTD, carbohydrates 58 %, proteins 29 %, lipids 13 %) and two hypercaloric diets, high in sucrose (HSD, carbohydrates 68 %, proteins 22 %, lipids 10 %) or high in fat (HFD, carbohydrates 31 %, proteins 14 %, lipids 55 %). Serum levels of glucose, triglycerides and free fatty acids were measured after zoometric parameters determination. Antioxidant enzymes activity and oxidative stress-marker were measured in pancreas tissue among histological analysis of Langerhans islets. KEY FINDINGS: Although diets were hypercaloric, the amount of food consumed by rats decreased, resulting in an equal caloric consumption. The HSD induced hypertriglyceridemia and hyperglycemia with higher levels in free fatty acids (FFA, lipotoxicity); whereas HFD did not increased neither the triglycerides nor FFA, nevertheless the loss of islets' cell was larger. Both diets induced obesity with hyperglycemia and significant reduction in Langerhans islets size. SIGNIFICANCE: Our results demonstrate that consumption of HSD induces more significant metabolic disturbances that HFD, although both generated pancreas damage; as well hypercaloric diet consumption is not indispensable to becoming obese; the chronic consumption of unbalanced diets (rich in carbohydrates or lipids) may lead to abdominal obesity with metabolic and functional disturbances, although the total amount of calories are similar.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Male , Rats , Animals , Diabetes Mellitus, Type 2/etiology , Obesity, Abdominal/etiology , Sucrose , Fatty Acids, Nonesterified , Langerhans Cells/metabolism , Rats, Wistar , Blood Glucose/metabolism , Obesity/metabolism , Diet , Triglycerides/metabolism , Diet, High-Fat/adverse effects
3.
J Cell Mol Med ; 27(20): 3147-3156, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37726932

ABSTRACT

Benign prostatic hyperplasia (BPH) is the most common adenoma in old men. Tomatoes are a rich source of bioactive compounds that, as well as selenium (Se), possess antioxidant and antiproliferative activity. The aim was to evaluate the therapeutic effect of Se in combination with a tomato extract in aged rats with BPH. Aged male Wistar rats were divided in the following groups (n = 10 rats/group): Control (C), BPH, BPH + Finasteride (BPH + F), BPH + Tomato Lipidic Extract (BPH + E), BPH + Selenium (BPH + S) and BPH plus E plus S (BPH + E + S). After 4 weeks of treatment, prostate weight, diuresis, antioxidants enzymes, prooxidants and inflammatory markers, growth factors and androgens were determined. BPH + E + S reduced prostate weight by 59.29% and inhibited growth by 99.35% compared to BPH + F which only decreased weight and inhibited growth by 15.31% and 57.54%, respectively. Prooxidant markers were higher with BPH + F (49.4% higher vs. BPH), but BPH + E + S decreased these markers (94.27% vs. BPH) and increased antioxidant activity. Finally, diuresis was higher with the BPH + E + S combination and markers of inflammation and growth factors were significantly lower with respect to BPH + F. Our findings provide a beneficial and protective therapeutic option of E + S directed against androgens, oxidative stress and inflammation that regulates cell proliferation in the prostate gland.

4.
World J Urol ; 41(10): 2793-2799, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659980

ABSTRACT

PURPOSE: Evaluate the therapeutic effect of a tomato lipidic extract (STE) in combination with selenium (Se) on rats with prostatic hyperplasia (PH) and to observe its possible mechanisms of action and synergism versus finasteride. MATERIALS AND METHODS: 54 male Wistar rats of nine weeks old were divided in Control (C), PH, Finasteride (F), STE, Se, F + STE, F + Se, STE + Se and F + STE + Se with testosterone enanthate (except C). After 4 weeks of treatment administration, prostate weight, bladder weight, diuresis, prooxidant and antioxidant activity, dihydrotestosterone (DHT), androgen receptor (AR) expression and anatomopathological analysis were determined. RESULTS: STE + Se decreased prostate weight 53.8% versus 28% in F group, also STE + Se decreased significatively glandular hyperplasia, prooxidant activity, DHT and AR expression and increased diuresis and antioxidant activity versus finasteride which increased MDA in prostate. CONCLUSIONS: These results demonstrate a greater therapeutic and beneficial effect of tomato lipidic extract in combination with Se in young rats with PH with respect to finasteride without increase prooxidant activity.


Subject(s)
Prostatic Hyperplasia , Selenium , Solanum lycopersicum , Animals , Male , Rats , Androgens/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Dihydrotestosterone/metabolism , Finasteride/pharmacology , Finasteride/therapeutic use , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology , Rats, Wistar , Receptors, Androgen/metabolism , Selenium/pharmacology , Selenium/therapeutic use , Testosterone/therapeutic use
5.
Phytother Res ; 37(8): 3394-3407, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37012651

ABSTRACT

Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor; therefore, TNBC lacks targeted therapy, and chemotherapy is the only available treatment for this illness but causes side effects. A putative strategy for the treatment of TNBC could be the use of the polyphenols such as α-Mangostin (α-M), which has shown anticancerogenic effects in different cancer models and can modulate the inflammatory and prooxidant state in several pathological models. The redox state, oxidative stress (OS), and oxidative damage are highly related to cancer development and its treatment. Thus, this study aimed to evaluate the effects of α-M on redox state, mitochondrial metabolism, and apoptosis in 4T1 mammary carcinoma cells. We found that α-M decreases both protein levels and enzymatic activity of catalase, and increases reactive oxygen species, oxidized proteins and glutathione disulfide, which demonstrates that α-M induces oxidative damage. We also found that α-M promotes mitochondrial dysfunction by abating basal respiration, the respiration ligated to oxidative phosphorylation (OXPHOS), and the rate control of whole 4T1 cells. Additionally, α-M also decreases the levels of OXPHOS subunits of mitochondrial complexes I, II, III, and adenosine triphosphate synthase, the activity of mitochondrial complex I as well as the levels of peroxisome proliferator-activated receptor-gamma co-activator 1α, showing a mitochondrial mass reduction. Then, oxidative damage and mitochondrial dysfunction induced by α-M induce apoptosis of 4T1 cells, which is evidenced by B cell lymphoma 2 decrease and caspase 3 cleavage. Taken together, our results suggest that α-M induces OS and mitochondrial dysfunction, resulting in 4T1 cell death through apoptotic mechanisms.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Oxidative Stress , Reactive Oxygen Species/metabolism , Apoptosis , Mitochondria
6.
Biomedicines ; 11(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36979827

ABSTRACT

Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties. Because the antioxidant effects of LEV have not been demonstrated in the chronic phase of epilepsy, the objective of this study was to evaluate, for the first time, the effects of LEV on the oxidant-antioxidant status in the hippocampus of rats with temporal lobe epilepsy (TLE). The in vitro scavenging capacity of LEV was evaluated. LEV administration in rats with TLE significantly increased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, but did not change glutathione peroxidase (GPx) activity, and significantly decreased glutathione reductase (GR) activity in comparison with epileptic rats. LEV administration in rats with TLE significantly reduced hydrogen peroxide (H2O2) levels but did not change lipoperoxidation and carbonylated protein levels in comparison with epileptic rats. In addition, LEV showed in vitro scavenging activity against hydroxyl radical (HO•). LEV showed significant antioxidant effects in relation to restoring the redox balance in the hippocampus of rats with TLE. In vitro, LEV demonstrated direct antioxidant activity against HO•.

7.
Antioxidants (Basel) ; 12(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36670920

ABSTRACT

Breast cancer (BC) is the second most common cancer worldwide in women. During the last decades, the mortality due to breast cancer has progressively decreased due to early diagnosis and the emergence of more effective new treatments. However, human epidermal growth factor receptor 2 (HER2) and triple-negative breast cancer (TNBC) remain with poor prognoses. In our research group, we are proposing the GK-1 immunomodulatory peptide as a new alternative for immunotherapy of these aggressive tumors. GK-1 reduced the growth rate of established tumors and effectively reduced lung metastasis in the 4T1 experimental murine model of breast cancer. Herein, the effect of GK-1 on the redox state, mitochondrial metabolism, and autophagy of triple-negative tumors that can be linked to cancer evolution was studied. GK-1 decreased catalase activity, reduced glutathione (GSH) content and GSH/oxidized glutathione (GSSG) ratio while increased hydrogen peroxide (H2O2) production, GSSG, and protein carbonyl content, inducing oxidative stress (OS) in tumoral tissues. This imbalance between reactive oxygen species (ROS) and antioxidants was related to mitochondrial dysfunction and uncoupling, characterized by reduced mitochondrial respiratory parameters and dissipation of mitochondrial membrane potential (ΔΨm), respectively. Furthermore, GK-1 likely affected autophagy flux, confirmed by elevated levels of p62, a marker of autophagy flux. Overall, the induction of OS, dysfunction, and uncoupling of the mitochondria and the reduction of autophagy could be molecular mechanisms that underlie the reduction of the 4T1 breast cancer induced by GK-1.

8.
Sci Rep ; 11(1): 21193, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707201

ABSTRACT

Endothelial dysfunction (ED) is a key factor for the development of cardiovascular diseases. Due to its chronic, life-threatening nature, ED only can be studied experimentally in animal models. Therefore, this work was aimed to characterize a murine model of ED induced by a daily intraperitoneal administration of angiotensin II (AGII) for 10 weeks. Oxidative stress, inflammation, vascular remodeling, hypertension, and damage to various target organs were evaluated in treated animals. The results indicated that a chronic intraperitoneal administration of AGII increases the production of systemic soluble VCAM, ROS and ICAM-1 expression, and the production of TNFα, IL1ß, IL17A, IL4, TGFß, and IL10 in the kidney, as well as blood pressure levels; it also promotes vascular remodeling and induces non-alcoholic fatty liver disease, glomerulosclerosis, and proliferative retinopathy. Therefore, the model herein proposed can be a representative model for ED; additionally, it is easy to implement, safe, rapid, and inexpensive.


Subject(s)
Angiotensin II/administration & dosage , Disease Models, Animal , Endothelium, Vascular/metabolism , Vascular Diseases/metabolism , Angiotensin II/toxicity , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Infusions, Parenteral , Intercellular Adhesion Molecule-1/metabolism , Interleukins/metabolism , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Diseases/etiology , Vascular Diseases/pathology , Vascular Remodeling
9.
Molecules ; 25(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992605

ABSTRACT

Isoliquiritigenin (IsoLQ) is a flavonoid with antioxidant properties and inducer of endoplasmic reticulum (ER) stress. In vitro and in vivo studies show that ER stress-mediated hormesis is cytoprotective; therefore, natural antioxidants and ER stress inducers have been used to prevent renal injury. Oxidative stress and ER stress are some of the mechanisms of damage involved in cisplatin (CP)-induced nephrotoxicity. This study aims to explore whether IsoLQ pretreatment induces ER stress and produces hormesis to protect against CP-induced nephrotoxicity in Lilly Laboratories Cell-Porcine Kidney 1 (LLC-PK1) cells. During the first stage of this study, both IsoLQ protective concentration and pretreatment time against CP-induced toxicity were determined by cell viability. At the second stage, the effect of IsoLQ pretreatment on cell viability, ER stress, and oxidative stress were evaluated. IsoLQ pretreatment in CP-treated cells induces expression of glucose-related proteins 78 and 94 kDa (GRP78 and GRP94, respectively), attenuates CP-induced cell death, decreases reactive oxygen species (ROS) production, and prevents the decrease in glutathione/glutathione disulfide (GSH/GSSG) ratio, free thiols levels, and glutathione reductase (GR) activity. These data suggest that IsoLQ pretreatment has a moderately protective effect on CP-induced toxicity in LLC-PK1 cells, through ER stress-mediated hormesis, as well as by the antioxidant properties of IsoLQ.


Subject(s)
Chalcones/pharmacology , Cisplatin/adverse effects , Endoplasmic Reticulum Stress/drug effects , Hormesis/drug effects , Oxidative Stress/drug effects , Animals , Cisplatin/pharmacology , LLC-PK1 Cells , Swine
10.
Nutrients ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971775

ABSTRACT

BACKGROUND: Magnesium is a mineral that modulates several physiological processes. However, its relationship with intestinal microbiota has been scarcely studied. Therefore, this study aimed to assess the role of dietary magnesium content to modulate the intestinal microbiota of Wistar male rats. METHODS: Rats were randomly assigned one of three diets: a control diet (C-Mg; 1000 mg/kg), a low magnesium content diet (L-Mg; 60 mg/kg), and a high magnesium content diet (H-Mg; 6000 mg/kg), for two weeks. After treatment, fecal samples were collected. Microbiota composition was assessed by sequencing the V3-V4 hypervariable region. RESULTS: The C-Mg and L-Mg groups had more diversity than H-Mg group. CF231, SMB53, Dorea, Lactobacillus and Turibacter were enriched in the L-Mg group. In contrast, the phyla Proteobacteria, Parabacteroides, Butyricimonas, and Victivallis were overrepresented in the H-Mg group. PICRUSt analysis indicated that fecal microbiota of the L-Mg group were encoded with an increased abundance of metabolic pathways involving carbohydrate metabolism and butanoate metabolism. CONCLUSION: Dietary magnesium supplementation can result in intestinal dysbiosis development in a situation where there is no magnesium deficiency. Conversely, low dietary magnesium consumption is associated with microbiota with a higher capacity to harvest energy from the diet.


Subject(s)
Diet , Gastrointestinal Microbiome/drug effects , Magnesium/administration & dosage , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Load , Bacteroidetes/isolation & purification , Butyric Acid/metabolism , Carbohydrate Metabolism , Dietary Supplements/adverse effects , Dysbiosis/chemically induced , Feces/microbiology , Firmicutes/isolation & purification , Magnesium/adverse effects , Magnesium Deficiency/microbiology , Male , Proteobacteria/isolation & purification , Rats , Rats, Wistar
11.
Nutrients ; 12(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867018

ABSTRACT

PURPOSE: To determine the relationship between uric acid (UA) and nutritional and antioxidant status in hemodialysis (HD) patients, given that hyperuricemia could be an indicator of good nutritional status possibly because of the antioxidant properties of UA. METHODS: Cross-sectional study with 93 patients on HD. Hyperuricemia was considered as UA ≥6.0 mg/dL in females and ≥7.0 mg/dL in males. Nutritional variables were registered. Blood samples were taken before the dialysis session to determine oxidative damage as plasma malondialdehyde (MDA) content, and antioxidant capacity measuring 2,2-diphenyl-piclrylhidrazil radical (DPPH●) scavenging activity and oxygen radical absorbance capacity (ORAC) value. RESULTS: Patients with hyperuricemia had higher creatinine (11.9 vs. 10.5 mg/dL; p = 0.004), potassium (5.5 vs. 5.0 mg/dL; p = 0.014) levels; phase angle (5.8 vs. 4.9; p = 0.005), protein consumption (normalized protein nitrogen appearance, nPNA, 1.03 vs. 0.83; p = 0.013) than normouricemic patients. DPPH● scavenging activity was higher in hyperuricemic subjects (1.139 vs. 1.049 mM Trolox equivalents; p = 0.007); likewise, hyperuricemic subjects had less oxidant damage measured by MDA (10.6 vs. 12.7 nmol/mL; p = 0.020). Subjects with normouricemia were at higher risk of having a reactance to height (Xc/H) ratio less than 35 (OR 2.79; 95% CI, 1.1-7.017, p = 0.028); nPNA < 1.0 (OR 3.78; 95% CI, 1.4-10.2, p = 0.007), diagnosis of cachexia (OR 2.95; 95% CI, 1156-7.518, p = 0.021), potassium levels <5 (OR 2.97; 95% CI, 1.136-7.772, p = 0.023) and PA < 5.5° (OR 3.38; 95% CI, 1.309-8.749, p = 0.012.) Conclusions: Patients with hyperuricemia had higher antioxidant capacity and better nutritional status. Purines and protein restrictions in HD patients with hyperuricemia need to be reviewed individually for each patient. More studies are needed to stablish a cut point of UA levels in renal population.


Subject(s)
Antioxidants/metabolism , Nutritional Status , Renal Dialysis , Uric Acid/blood , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
12.
Antioxidants (Basel) ; 9(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752212

ABSTRACT

Obesity is a major health problem worldwide and constitutes a sanitary emergency in Mexico, especially childhood obesity. Several studies have proved the relationship between obesity and oxidative stress and the influence of genetic predisposition. This work was aimed to analyze the association of antioxidant enzyme polymorphisms with overweight and obesity in Mexican children and adolescents. A case-control study was performed in 585 children and adolescents aged 3 to 17 years, using two criteria to classify obesity: body mass index (BMI) and body fat percentage (BFP). Anthropometric and biochemical measurements were carried out, and malondialdehyde serum levels were determined. Genotyping was done with the Axiom Genome-Wide LAT microarray, including 68 single nucleotide polymorphisms (SNPs) of the glutathione peroxidase (GPX) and paraoxonase (PON) families. We found six haplotypes associated with obesity-two of them (one in GPX3 and the other in GPX5 and GPX6) in a protective direction when obesity was classified by BMI. The other four haplotypes were associated with obesity when classification was based on BFP-one of them in GPX3 in a protective direction and the others in PON genes conferring obesity risk. In addition, two SNPs, GPX3 rs922429 and GPX4 rs2074451 showed protection against obesity classified by BFP. This study showed genetic susceptibility to oxidative stress in relation to obesity in Mexican children and opens up the possibility that some genetic loci related to obesity are not identified when weight classification is based on BMI.

13.
Vet Sci ; 7(2)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466565

ABSTRACT

Chicken meat is a food of high nutritional quality; its production requires birds called broilers breeders and looking after all aspects that influence their reproductive capacity. An ongoing controversy exists among researchers related to the weight of the rooster and its fertilization capacity. By histological and biochemical tests, the association between weight and age with oxidant damage, testicular parenchyma and antioxidant capacity was evaluated in Ross 308 roosters. Testicular integrity was assessed by histological analysis, oxidative stress was determined by malondialdehyde content, non-enzymatic antioxidant capacity was determined by oxygen radical absorbance capacity assay and enzymatic antioxidant capacity through glutathione peroxidase, glutathione reductase and glutathione-S-transferase activities. Histological analysis showed vacuolization of the epithelium from the seminiferous tubules. A significant negative association was observed between malondialdehyde and the deterioration of the integrity of the seminiferous epithelium, as well as between age and integrity of the seminiferous epithelium. It became evident that oxidative damage directly affects the quality of testicular parenchyma. Weight and age were not associated with the antioxidant enzymes activities, but with non-enzymatic capacity. The data obtained suggest that weight is not the most important factor that influences the fertility of the rooster.

14.
Antioxidants (Basel) ; 9(3)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244955

ABSTRACT

This study aimed to compare the antioxidant activities of extracts obtained from three plant families and evaluate their therapeutic effect on strokes. Ethanol extracts were obtained from either the leaf or the aerial parts of plants of the families Annonaceae (Annona cherimola, A. diversifolia, A. muricata, A. purpurea, and A. reticulata), Lamiaceae (Salvia amaríssima and S. polystachya), and Geraniaceae (Geranium niveum and G. mexicanum). Extracts were analyzed in terms of hydroxyl radical (OH•), peroxyl radical (ROO•), and superoxide anion (O2•-). The efficiency of the extracts to prevent neuronal death induced by excitotoxicity was tested with the tetrazolium assay, the O2•- scavenging capacity was evaluated with the dihydroethidium dye, and the protective effect of the extracts with the highest antioxidant activity was tested on a stroke experimental model. The extracts' IC50 values (µg/mL) of scavenging varied from 98.9 to 155.04, 4.5 to 102.4, and 20.2 to 118.97 for OH•, ROO•, and O2•-, respectively. In the excitotoxicity model, Annonaceae extracts were highly cytotoxic while Lamiaceae and Geraniaceae reduced intracellular O2•- production and protect neurons against oxidative stress. Salvia polystachya reduced cerebral damage, as well as improved survival and behavior after ischemia. Our results encouraged the use of plant extracts as natural antioxidants to minimize neuronal injury following stroke.

15.
Free Radic Biol Med ; 135: 60-67, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30818054

ABSTRACT

Food deprivation protects against ischemia-reperfusion (IR) injury through unknown mechanisms. In an experimental rat model of acute IR injury, we found that preoperative fasting for 3 days protects rats from tubular damage and renal functional decline by increasing antioxidant protection independently of the NF-E2-related factor 2 (Nrf2), and by maintaining mitochondrial morphology and function. In addition, further analysis revealed that fasting protects against tubulointerstitial fibrosis. In summary, our results point out to fasting as a robust nutritional intervention to limit oxidative stress and mitochondrial dysfunction in early acute kidney injury and also to promote long-term protection against fibrosis.


Subject(s)
Acute Kidney Injury/diet therapy , Kidney/metabolism , NF-E2-Related Factor 2/genetics , Reperfusion Injury/diet therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Antioxidants/metabolism , Fasting/metabolism , Fibrosis/diet therapy , Fibrosis/metabolism , Fibrosis/pathology , Food Deprivation , Humans , Kidney/injuries , Kidney/pathology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Malondialdehyde/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Rats , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
16.
Food Chem Toxicol ; 124: 300-315, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30557668

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that causes physical disability in people worldwide. Despite progress made in RA treatment in the past decade, new drugs with high efficacy but few long-term adverse effects are still needed. This study focused on evaluating the therapeutic potential of α-mangostin on established collagen-induced arthritis (CIA) in DBA/1J mice. Arthritic DBA/1J mice were orally administered with two doses of α-mangostin (10 and 40 mg/kg) daily, for 33 days. Alpha-mangostin significantly decreased the clinical score in the short term at both doses and decreased the histopathological score at the higher dose. This improvement was accompanied by a reduction on serum levels of anti-collagen IgG2a autoantibodies and of the production of LIX/CXCL5, IP-10/CXCL10, MIG/CXCL9, RANTES/CCL5, IL-6 and IL-33 in the joints of CIA mice. Alpha-mangostin also exhibited an anti-oxidant effect decreasing the NADPH oxidase activity and lipid peroxidation and preserving the levels of reduced glutathione in the arthritic joints. In vitro this xanthone demonstrated modulatory properties on LPS-activated dendritic cells, although in Th1 and Th17-polarized lymphocytes promotes a pro-apoptotic phenotype. Altogether this study illustrates the capacity of α-mangostin to ameliorate the early clinical and histological signs of established CIA by reducing the inflammatory and oxidative responses.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Xanthones/therapeutic use , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Apoptosis/drug effects , Arthritis, Experimental/chemically induced , Arthritis, Rheumatoid/chemically induced , Collagen/immunology , Cytokines/metabolism , Dendritic Cells/drug effects , Garcinia mangostana/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Inflammation/drug therapy , Knee Joint/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Oxidative Stress/drug effects , Th1 Cells/drug effects , Th17 Cells/drug effects , Xanthones/isolation & purification
17.
Article in English | MEDLINE | ID: mdl-30487467

ABSTRACT

Dyslipidemia and oxidative stress are both considered to be factors involved in cardiovascular disease; however, the relationship between them has been little explored. In this work, we studied the association between the lipid profile and the activity of antioxidant enzymes such as paraoxonase-1 (PON1), superoxide dismutase 1 (SOD1), ceruloplasmin, and catalase, as well as total antioxidant capacity (the ferric-reducing ability of plasma (FRAP)), in 626 volunteers without cardiovascular disease. Their lipid profile was evaluated, and they were classified as having or not having high triglycerides (↑TG), high low-density cholesterol (↑LDLC), and low high-density cholesterol (↓HDLC), resulting in eight groups: Without dyslipidemia, ↑TG, ↑LDLC, ↓HDLC, ↑TG↑LDLC, ↑TG↓HDLC, ↑LDLC↓HDLC, and ↑TG↑LDLC↓HDLC. When comparisons by group were made, no significant differences in the activity of antioxidant enzymes were obtained. However, the linear regression analysis considering the potential interactions between ↑TG, ↑LDLC, and ↓HDLC suggested a triple interaction between the three lipid profile alterations on the activity of PON1 and a double interaction between ↑TG and ↑LDLC on ferroxidase-ceruloplasmin activity. The analysis presented in this work showed an association between the lipid profile and antioxidant-enzyme activity and highlighted the importance of considering the interactions between the components of a phenomenon instead of studying them individually. Longitudinal studies are needed to elucidate the nature of these associations.


Subject(s)
Antioxidants/metabolism , Lipids/blood , Adult , Aryldialkylphosphatase/biosynthesis , Catalase/biosynthesis , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Humans , Male , Mexico , Middle Aged , Oxidation-Reduction , Superoxide Dismutase/biosynthesis , Triglycerides/blood
18.
Data Brief ; 18: 448-453, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900200

ABSTRACT

Endothelial dysfunction induced by Angiotensin II (AG II) plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage including the kidney (Schmitt and Dirsch, 2009) [1]. New drugs that can control several of these pathologies are required. Sechium edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity (Ibarra-Alvarado et al., 2010) [2]. This paper contains data complementary to those published in Journal of Ethnopharmacology (Moreno et al., 2018) [3], evaluating the effect in kidney of hypertensive mice of the acetone fraction from S. edule to control de pro-oxidative state, reduction of the inflammatory adhesion molecule (ICAM) and recruitment of inflammatory cells.

19.
J Ethnopharmacol ; 220: 75-86, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29501845

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: A recent ethnomedical survey on medicinal plants grown in Mexico revealed that Sechium edule (Jacq.) Sw. (Cucurbitaceae) is one of the most valued plant species to treat cardiovascular diseases, including hypertension. Fruits, young leaves, buds, stems, and tuberous roots of the plant are edible. Considering that endothelial dysfunction induced by Angiotensin II plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage, and that S. edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity, its capability to control endothelial dysfunction was also assessed. AIM OF THE STUDY: To assess in vivo the anti-endothelial dysfunction activity of the acetone fraction (rSe-ACE) of the hydroalcoholic extract from S. edule roots. MATERIALS AND METHODS: Endothelial dysfunction was induced in female C57BL/6 J mice by a daily intraperitoneal injection of angiotensin II for 10 weeks. Either rSe-ACE or losartan (as a control) were co-administered with angiotensin II for the same period. Blood pressure was measured at weeks 0, 5, and 10. Kidney extracts were prepared to determine IL1ß, IL4, IL6, IL10, IL17, IFNγ, TNFα, and TGFß levels by ELISA, along with the prooxidative status as assessed by the activity of antioxidant enzymes. The expression of ICAM-1 was evaluated by immunohistochemistry in kidney histological sections. Kidney and hepatic damage, as well as vascular tissue remodeling, were studied. RESULTS: The rSe-ACE fraction administered at a dose of 10 mg/kg was able to control hypertension, as well as the prooxidative and proinflammatory status in kidney as efficiently as losartan, returning mice to normotensive levels. Additionally, the fraction was more efficient than losartan to prevent liver and kidney damage. Phytochemical characterization identified cinnamic acid as a major compound, and linoleic, palmitic, and myristic acids as the most abundant non-polar components in the mixture, previously reported to aid in the control of hypertension, inflammation, and oxidative stress, three important components of endothelial dysfunction. IN CONCLUSION: this study demonstrated that rSe-ACE has anti-endothelial dysfunction activity in an experimental model and highlights the role of cinnamic acid and fatty acids in the observed effects.


Subject(s)
Cucurbitaceae/chemistry , Endothelium, Vascular/drug effects , Plant Extracts/pharmacology , Vascular Diseases/prevention & control , Acetone/chemistry , Angiotensin II/administration & dosage , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Antioxidants/metabolism , Cinnamates/isolation & purification , Cinnamates/pharmacology , Disease Models, Animal , Endothelium, Vascular/pathology , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Female , Losartan/pharmacology , Mexico , Mice , Mice, Inbred C57BL , Plant Roots , Vascular Diseases/pathology
20.
Food Chem Toxicol ; 100: 90-102, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27993529

ABSTRACT

Antioxidant-based chemotherapy has been intensely debated. Herein, we show that sulforaphane (SFN) induced mitochondrial biogenesis followed by mitochondrial fusion in a kidney cell line commonly used in nephroprotective models. At the same concentration and exposure time, SFN induced cell death in prostate cancer cells accompanied by mitochondrial biogenesis and fragmentation. Stabilization of the nuclear factor E2-related factor-2 (Nrf2) could be associated with these effects in the tumor cell line. An increase in the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) level and a decrease in the hypoxia-inducible factor-1α (HIF1α) level would suggest a possible metabolic shift. The knockdown in the nuclear respiratory factor-1 (NRF1) attenuated the SFN-induced effect on prostate cancer cells demonstrating that mitochondrial biogenesis plays an important role in cell death for this kind of tumor cells. This evidence supports SFN as a potential antineoplastic agent that could inhibit tumor development and could protect normal tissues by modulating common processes.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Isothiocyanates/pharmacology , Mitochondria/drug effects , Organelle Biogenesis , Prostate/drug effects , Prostatic Neoplasms/drug therapy , Antioxidants/metabolism , Blotting, Western , Cells, Cultured , Humans , Male , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Signal Transduction/drug effects , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL