Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 14(11): e0225188, 2019.
Article in English | MEDLINE | ID: mdl-31765413

ABSTRACT

Rare diseases defined by genetic mutations are classic targets for gene therapy. More recently, researchers expanded the use of gene therapy in non-clinical studies to infectious diseases through the delivery of vectorized antibodies to well-defined antigens. Here, we further extend the utility of gene therapy beyond the "accepted" indications to include organophosphate poisoning. There are no approved preventives for the multi-organ damage resulting from acute or chronic exposure to organophosphates. We show that a single intramuscular injection of adeno-associated virus vector produces peak expression (~0.5 mg/ml) of active human butyrylcholinesterase (hBChE) in mice serum within 3-4 weeks post-treatment. This expression is sustained for up to 140 days post-injection with no silencing. Sustained expression of hBChE provided dose-dependent protection against VX in male and female mice despite detectable antibodies to hBChE in some mice, thereby demonstrating that expression of hBChE in vivo in mouse muscle is an effective prophylactic against organophosphate poisoning.


Subject(s)
Butyrylcholinesterase/genetics , Dependovirus/genetics , Genetic Therapy/methods , Organophosphate Poisoning/therapy , Animals , Butyrylcholinesterase/metabolism , Female , Genetic Vectors/genetics , Humans , Male , Mice , Mice, Inbred C57BL
2.
Vaccine ; 34(50): 6323-6329, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27817961

ABSTRACT

The seroprevalence of neutralizing antibodies (NAbs) to adeno-associated viral (AAV) vector capsids may preclude a percentage of the population from receiving gene therapy, particularly following systemic vector administration. We hypothesized that the use of intramuscular (IM) administration of AAV vectors might circumvent this issue. IM injections were used to administer AAV8 vectors expressing either secreted or non-secreted transgenes into mice and the influence of NAbs supplied by pre-administration of pooled human IgG on transgene expression was evaluated. We then studied the impact of naturally occurring pre-existing AAV8 NAbs on expression of a secreted transgene following IM vector delivery in rhesus macaques. Finally, we evaluated the ability to readminister AAV vectors via IM injections in rhesus macaques. In mice, the presence of AAV8 NAbs had no effect on gene expression in the injected skeletal muscle. However, liver transgene expression following hepatic distribution of the vector was ablated. In rhesus macaques, naturally occurring pre-existing AAV8 NAb titers of ⩽1:160 had no effect on expression levels of a secreted transgene after IM delivery of the vector. Additionally, readministration of AAV vectors was possible by IM injection into the previously injected muscle groups, with no effect on transgene expression by the original vector. Therefore, the presence of pre-existing NAbs in the human population should not preclude subjects from receiving gene therapy by IM administration of the vector so long as sufficient levels of secreted transgene expression can be produced without the involvement of liver.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dependovirus/immunology , Genetic Vectors/immunology , Animals , Gene Expression , Genetic Therapy/methods , Injections, Intramuscular , Macaca mulatta , Male , Mice, Inbred C57BL , Mice, Knockout , Seroepidemiologic Studies , Transgenes
3.
PLoS One ; 9(11): e112268, 2014.
Article in English | MEDLINE | ID: mdl-25393537

ABSTRACT

Intramuscular (IM) administration of adeno-associated viral (AAV) vectors has entered the early stages of clinical development with some success, including the first approved gene therapy product in the West called Glybera. In preparation for broader clinical development of IM AAV vector gene therapy, we conducted detailed pre-clinical studies in mice and macaques evaluating aspects of delivery that could affect performance. We found that following IM administration of AAV8 vectors in mice, a portion of the vector reached the liver and hepatic gene expression contributed significantly to total expression of secreted transgenes. The contribution from liver could be controlled by altering injection volume and by the use of traditional (promoter) and non-traditional (tissue-specific microRNA target sites) expression control elements. Hepatic distribution of vector following IM injection was also noted in rhesus macaques. These pre-clinical data on AAV delivery should inform safe and efficient development of future AAV products.


Subject(s)
Dependovirus/genetics , Genetic Vectors/administration & dosage , Liver/metabolism , Transgenes , Animals , Gene Expression , Gene Transfer Techniques , Injections, Intramuscular , Macaca mulatta , Male , Mice , MicroRNAs/metabolism , Organ Specificity
4.
PLoS Pathog ; 5(7): e1000503, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19578438

ABSTRACT

Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors.


Subject(s)
Adenoviridae Infections/veterinary , Adenoviridae/isolation & purification , Feces/virology , Gastrointestinal Tract/virology , Hominidae/virology , Macaca/virology , Adenoviridae/genetics , Adenoviridae Infections/virology , Africa , Animals , Animals, Zoo , Genes, Viral , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/methods , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...