Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(26): 17666-17675, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29932186

ABSTRACT

Glutathione (GSH), whose thiol group dictates its redox chemistry, is oxidized to the thiyl radical (GS˙), which rapidly dimerizes to GSSG. Previously, we found that the oxidation rate of GSH by IrCl62- depends on the base (B) concentration and the pKa of its conjugate acid BH+, so that collateral to a stepwise mechanism, the concerted pathway GSH + IrCl62- + B = GS˙ + IrCl63- + BH+ was proposed as the rate determining step. Herein, this investigation is extended to include oxidant-base pairs that render exothermic and endothermic conditions of ΔG°' for electron transfer (ET) and proton transfer (PT). Experiments were conducted by the reaction of GSH with an electrogenerated oxidant M+ and using digital simulations to infer the mechanism. Data analysis shows that despite parallel mechanisms, the concerted one seems to predominate for the oxidant-base pair that renders the most isoenergetic coupled state, whereby a PT with is capable of producing an ET with , as a result of the Nernstian shift of with pKa. In contrast, the stepwise PT-ET appears to dominate when GS- grows in stability as becomes more negative. Understanding the interplay between ET and PT will help in the design of catalysts for energy harvesting processes that rely on proton-coupled electron transfer.


Subject(s)
Glutathione/chemistry , Chlorides/chemistry , Coordination Complexes/chemistry , Electrochemical Techniques/methods , Electron Transport , Electrons , Hydrogen-Ion Concentration , Iridium/chemistry , Kinetics , Oxidation-Reduction , Physical Phenomena , Protons , Thermodynamics
2.
J Am Chem Soc ; 137(15): 5021-7, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25697668

ABSTRACT

The development of affordable electrocatalysts that can drive the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is a critical step on the path to production of liquid carbon-based fuels. In this work, we show that inexpensive triflate salts of Sn(2+), Pb(2+), Bi(3+), and Sb(3+) can be used as precursors for the electrodeposition of CO2 reduction cathode materials from MeCN solutions, providing a general and facile electrodeposition strategy, which streamlines catalyst synthesis. The ability of these four platforms to drive the formation of CO from CO2 in the presence of [BMIM]OTf was probed. The electrochemically prepared Sn and Bi catalysts proved to be highly active, selective, and robust platforms for CO evolution, with partial current densities of jCO = 5-8 mA/cm(2) at applied overpotentials of η < 250 mV. By contrast, the electrodeposited Pb and Sb catalysts do not promote rapid CO generation with the same level of selectivity. The Pb material is only ∼10% as active as the Sn and Bi systems at an applied potential of E = -1.95 V and is rapidly passivated during catalysis. The Sb-comprised cathode material shows no activity for conversion of CO2 to CO under analogous conditions. When taken together, this work demonstrates that 1,3-dialkylimidazoliums can promote CO production, but only when used in combination with an appropriately chosen electrocatalyst material. More broadly, these results suggest that the interactions between CO2, the imidazolium promoter, and the cathode surface are all critical to the observed catalysis.

3.
J Am Chem Soc ; 136(23): 8361-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24783975

ABSTRACT

The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel.


Subject(s)
Bismuth/chemistry , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Catalysis , Electricity , Electrochemical Techniques , Electrodes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...