Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003316

ABSTRACT

ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.


Subject(s)
Coronary Artery Disease , RNA, Long Noncoding , Humans , Coronary Artery Disease/genetics , Vascular Endothelial Growth Factor A , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , NF-kappa B/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Protein Isoforms/genetics
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499752

ABSTRACT

Delayed cerebral ischemia (DCI) and vasospasm are two complications of subarachnoid hemorrhages (SAHs) which entail high risks of morbidity and mortality. However, it is unknown why only some patients who suffer SAHs will experience DCI and vasospasm. The purpose of this review is to describe the main genetic single nucleotide polymorphisms (SNPs) that have demonstrated a relationship with these complications. The SNP of the nitric oxide endothelial synthase (eNOS) has been related to the size and rupture of an aneurysm, as well as to DCI, vasospasm, and poor neurological outcome. The SNPs responsible for the asymmetric dimetilarginine and the high-mobility group box 1 have also been associated with DCI. An association between vasospasm and the SNPs of the eNOS, the haptoglobin, and the endothelin-1 receptor has been found. The SNPs of the angiotensin-converting enzyme have been related to DCI and poor neurological outcome. Studies on the SNPs of the Ryanodine Receptor yielded varying results regarding their association with vasospasm.


Subject(s)
Brain Ischemia , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/genetics , Vasospasm, Intracranial/genetics , Brain Ischemia/complications , Brain Ischemia/genetics , Cerebral Infarction/complications , Polymorphism, Single Nucleotide , Disease Susceptibility
SELECTION OF CITATIONS
SEARCH DETAIL
...